6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
Answer:
The corect answer would be C.
Explanation:
The flow rate set at a differentt time would be the correct measurement beecause wats and speed add up to your main answer.
The new volume of the air bubble that has an initial volume of 5.0 ml released at the bottom of a lake where the pressure is 3.0 atm is 15mL.
<h3>How to calculate volume?</h3>
The volume of a given gas can be calculated by using the following formula:
P1V1 = P2V2
Where;
- P1 = initial pressure
- V1 = initial volume
- P2 = final pressure
- V2 = final volume
5 × 3 = 1 × V2
15 = V2
V2 = 15mL
Therefore, the new volume of the air bubble that has an initial volume of 5.0 ml released at the bottom of a lake where the pressure is 3.0 atm is 15mL.
Learn more about volume at: brainly.com/question/1578538