Answer:
It would be PE=16kg * 9.8 m/s^2 * 1m = 160 J
Explanation:
The person who asked this question ended up answering his own question so I'm here to let you know all that the answer was founded by the person whos posted the question himself full credit goes to him :)
Given, mass of titanium metal = 144 g
Heat of fusion of titanium metal= 18.7 J/g
Heat of fusion is the amount of heat energy needed to change the state of one gram of a substance from solid to liquid or vice-versa.
Thus, 18.7 J of heat is needed to melt one gram of titanium metal.
Therefore, heat needed to melt 144 g of titanium metal = 18.7×144
= 2692.8 J
The phenomenon which is responsible for this effect is called diffraction.
Diffraction is the ability of a wave to propagate when it meets an obstacle or a slit. When the wave encounters the obstacle or the slit, it 'bends' around it and it continues propagate beyond it. A classical example of this phenomenon is when a sound wave propagates through a wall where there is a small aperture (as in the example of this problem)
Answer
given,
mass of the package = 12 kg
slides down distance = 2 m
angle of inclination = 53.0°
coefficient of kinetic friction = 0.4
a) work done on the package by friction is
W_f = -μk R d
= -μk (mg cos 53°)(2.0)
=-(0.4)(8.0 )(9.8)(cos 53°)(2.0)
= -37.75 J
b)
work done on the package by gravity is
W_g = m (g sin 53°) d
= (8.0 )(9.8 )(sin 53°)(2.0 )
=125.23 J
c)
the work done on the package by the normal force is
W_n = 0
d)
the net work done on the package is
W = -37.75 + 125.23 + 0
W = 87.84 J