1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
13

Why are vectors so important?

Physics
1 answer:
Zina [86]3 years ago
6 0
Vectors represent relationships according to the position, velocity, and acceleration (of a moving object).
Because so many physical things are vectors, you have to be able to add and subtract them, helping you understand how the world around you behaves.

I had to do some research (I was never good with physics) so if you have a couple questions, I will try to explain.
You might be interested in
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
3 years ago
An environmental scientist gives a demonstration on composting. Roger is in the audience. He wonders how composting discarded fo
Wittaler [7]

Answer:

A

Explanation:

I just did the test

4 0
3 years ago
Define and Explain the Sovereignty
GarryVolchara [31]

Sovereignty is a political concept that refers to dominant power or supreme authority.

Explanation:

Sovereignty is an attribute of states that is both an idea and a reality of state power. It is one of the means, an important one, by which the government of a state seeks to ensure the best it possibly can for its people. As such, it also changes over time.

6 0
3 years ago
2. An elephant puts a force of 30,000 N on its four feet, which have a
Alja [10]
Pressure = force ( in newtons ) / area ( in m^2 )

pressure put
= 30 000 N / 0.75 m^2
= 40 000 Pa
8 0
3 years ago
A 6.60-kg block slides with an initial speed of 1.56 m/s up a ramp inclined at an angle of 28.4° with the horizontal. The coeffi
Vlad [161]

Answer:

The distance travel by block before coming to rest is 0.122 m

Explanation:

Given:

Mass of block m = 6.60 kg

Initial speed of block v _{i} = 1.56 \frac{m}{s}

Final speed of block v_{f} = 0 \frac{m}{s}

Coefficient of kinetic friction \mu _{k} = 0.62

Ramp inclined at angle \theta = 28.4°

Using conservation of energy,

Work done by frictional force is equal to change in energy,

  \mu _{k} mgd \cos 28.4 =  \Delta K - \Delta U

Where \Delta U = mg d\sin 28.4

\mu _{k} mgd \cos 28.4 =  \frac{1}{2}mv_{i} ^{2} - mgd\sin 28.4

\mu _{k} mgd \cos 28.4 +mgd\sin 28.4  =  \frac{1}{2}mv_{i} ^{2}

d(6.60 \times 9.8 \times 0.62 \times 0.879 + 6.60 \times 9.8 \times 0.475) = \frac{1}{2} \times 6.60 \times (1.56)^{2}

 d = 0.122 m

Therefore, the distance travel by block before coming to rest is 0.122 m

7 0
4 years ago
Other questions:
  • Which of the following can reduce biodiversity within a natural environment? A. Yucca moths pollinate and feed on yucca plants i
    10·1 answer
  • A 6kg object speeds up from 5 m/s to 20 m/s. find p
    11·2 answers
  • 1)
    15·1 answer
  • If a spring requires 20 Newtons to be compressed a distance of 10 centimeters, what is the spring constant in N/m (newton meters
    13·1 answer
  • What would happen if the planets would go out of orbit and go on their own (10 Points)
    14·1 answer
  • What did it mean if something was in blue glass?
    9·1 answer
  • How many light years away is the sun from the middle of the Millky way​
    10·1 answer
  • Can someone help me please
    15·2 answers
  • A storage tank containing oil (SG=0.92) is 10.0 meters high and 16.0 meters in diameter. The tank is closed, but the amount of o
    8·1 answer
  • In some cases fixture wires may be used for
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!