Answer:
Kc = 0.075
Explanation:
The dissociation (α) is the initial quantity that ionized divided by the total dissolved. So, let's calling x the ionized quantity, and M the initial one:
α = x/M
x = M*α
x = 0.354M
For the stoichiometry of the reaction (2:1:1), the concentration of H₂ and I₂ must be half of the acid. So the equilibrium table must be:
2HI(g) ⇄ H₂(g) + I₂(g)
M 0 0 <em> Initial</em>
-0.354M +0.177M +0.177M <em>Reacts</em>
0.646M 0.177M 0.177M <em>Equilibrium</em>
The equilibrium constant Kc is the multiplication of the products' concentrations (elevated by their coefficients) divided by the multiplication of the reactants' concentrations (elevated by their coefficients):
![Kc = \frac{[H2]*[I2]}{[HI]^2}](https://tex.z-dn.net/?f=Kc%20%3D%20%5Cfrac%7B%5BH2%5D%2A%5BI2%5D%7D%7B%5BHI%5D%5E2%7D)


Kc = 0.075
Answer:
b) velocity.
c) velocity, m/s²
d)change in velocity, change in direction, change in both velocity and direction.
e) increasing or decreasing
It is c I hope I helped out with this question!.
Answer:
The temperature change from the combustion of the glucose is 6.097°C.
Explanation:
Benzoic acid;
Enthaply of combustion of benzoic acid = 3,228 kJ/mol
Mass of benzoic acid = 0.570 g
Moles of benzoic acid = 
Energy released by 0.004667 moles of benzoic acid on combustion:

Heat capacity of the calorimeter = C
Change in temperature of the calorimeter = ΔT = 2.053°C



Glucose:
Enthaply of combustion of glucose= 2,780 kJ/mol.
Mass of glucose=2.900 g
Moles of glucose = 
Energy released by the 0.016097 moles of calorimeter combustion:

Heat capacity of the calorimeter = C (calculated above)
Change in temperature of the calorimeter on combustion of glucose = ΔT'



The temperature change from the combustion of the glucose is 6.097°C.