The magnitude is doubled. The direction doesn't change.
Answer:
Xin lỗi, ở đây không có ai nói tiếng Việt, nhưng bạn có thể cuộn hết cỡ xuống dưới để tìm một trang web cho não biết nói tiếng Việt
Explanation:
Answer:
k = 11,564 N / m, w = 6.06 rad / s
Explanation:
In this exercise we have a horizontal bar and a vertical spring not stretched, the bar is released, which due to the force of gravity begins to descend, in the position of Tea = 46º it is in equilibrium;
let's apply the equilibrium condition at this point
Axis y
W_{y} - Fr = 0
Fr = k y
let's use trigonometry for the weight, we assume that the angle is measured with respect to the horizontal
sin 46 =
/ W
W_{y} = W sin 46
we substitute
mg sin 46 = k y
k = mg / y sin 46
If the length of the bar is L
sin 46 = y / L
y = L sin46
we substitute
k = mg / L sin 46 sin 46
k = mg / L
for an explicit calculation the length of the bar must be known, for example L = 1 m
k = 1.18 9.8 / 1
k = 11,564 N / m
With this value we look for the angular velocity for the point tea = 30º
let's use the conservation of mechanical energy
starting point, higher
Em₀ = U = mgy
end point. Point at 30º
= K -Ke = ½ I w² - ½ k y²
em₀ = Em_{f}
mgy = ½ I w² - ½ k y²
w = √ (mgy + ½ ky²) 2 / I
the height by 30º
sin 30 = y / L
y = L sin 30
y = 0.5 m
the moment of inertia of a bar that rotates at one end is
I = ⅓ mL 2
I = ½ 1.18 12
I = 0.3933 kg m²
let's calculate
w = Ra (1.18 9.8 0.5 + ½ 11,564 0.5 2) 2 / 0.3933)
w = 6.06 rad / s
It is correct, the action is paddling, where you move the water backwards, and the reaction is the boat moving forwards.
The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food).