<u>answer</u> 1<u> </u><u>:</u>
Law of conservation of momentum states that
For two or more bodies in an isolated system acting upon each other, their total momentum remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.
<u>answer</u><u> </u><u>2</u><u>:</u><u> </u>
When a substance is provided energy<u> </u>in the form of heat, it's temperature increases. The extent of temperature increase is determined by the heat capacity of the substance. The larger the heat capacity of a substance, the more energy is required to raise its temperature.
When a substance undergoes a FIRST ORDER phase change, its temperature remains constant as long as the phase change remains incomplete. When ice at -10 degrees C is heated, its temperature rises until it reaches 0 degrees C. At that temperature, it starts melting and solid water is converted to liquid water. During this time, all the heat energy provided to the system is USED UP in the process of converting solid to the liquid. Only when all the solid is converted, is the heat used to raise the temperature of the liquid.
This is what results in the flat part of the freezing/melting of condensation/boiling curve. In this flat region, the heat capacity of the substance is infinite. This is the famous "divergence" of the heat capacity during a first order phase transition.
There are certain phase transitions where the heat capacity does not become infinitely large, such as the process of a non-magnetic substance becoming a magnetic substance (when cooled below the so-called Curie temperature).
Answer:
The true statement is: Spontaneous reactions tend to lead to higher entropy.
Explanation:
The spontaneity of a reaction is linked to the value of Gibbs free energy (ΔG°). The more negative is this value, the more spontaneous is a reaction. At the same time, Gibbs free energy depends on enthalpy (ΔH°) and entropy (ΔS°), according to the following expression:
ΔG° = ΔH° - T.ΔS°
We can see that higher entropies (higher ΔS°) lead to more negative ΔG°, thus, more spontaneous reactions.
Answer:
S+ F2 ⇒ SF
S=1
F =2
So S +F2 ......... 2SF
2S + F2 ..........2SF this is a balance equation
S=2 F=2 in left side s=2 F = 2 in rightside
Explanation:⇆
⇒
The volume is the same for any gas
Answer:
1.56 M
Explanation:
This is a dilution process and so a dilution formula is suitably used as follows C1V1 = C2V2 where
C1 = concentration of the stock solution
V1 = volume of the stock solution
C2 = concentration of the resulting (dilute) solution and
V2 = the volume of the resulting (dilute) solution
C1V1 = C2V2 (Making C2 subject of the formula)
C2 = C1V1/V2
Given: C1 = 5.736 M; V1 = 3 Ml; V2 = (3+8) 11 Ml
C2 = 5.736 x 3 / 11
C2 = 1.56 M