Hitufir r r t g t f g h f f g h gg d y I. G f t y g r r y g f f u hi I. I g f d t I
Answer:
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Explanation:
2 NO (g) + O₂ (g) ⇄ 2NO₂ (g)
Let's apply the thermodynamic formula to calculate the ΔG
ΔG = ΔG° + R .T . lnQ
We don't know if the gases are at equilibrium, that's why we apply Q (reaction quotient)
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln Q
How can we know Q? By the partial pressures (Qp)
P NO = 0.450atm
PO₂ = 0.1 atm
PNO₂ = 0.650 atm
Qp = [NO₂]² / [NO]² . [O₂]
Qp = 0.650² / 0.450² . 0.1 = 20.86
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln 20.86
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Charles Law is the law that states pressure and temperature are directly proportional at constant volume and miles
Qualitative properties are properties that are observed and can generally not be measured with a numerical result. They are contrasted to quantitative properties which have numerical characteristics.
Answer:
70.15 cm³
Solution:
Data Given;
Mass = 55 g
Density = 0.784 g.cm⁻³
Required:
Volume = ?
Formula Used:
Density = Mass ÷ Volume
Solving for Volume,
Volume = Mass ÷ Density
Putting values,
Volume = 55 g ÷ 0.784 g.cm⁻³
Volume = 70.15 cm³