Answer:
The time taken by missile's clock is 
Solution:
As per the question:
Speed of the missile, 
Now,
If 'T' be the time of the frame at rest then the dilated time as per the question is given as:
T' = T + 1
Now, using the time dilation eqn:




(1)
Using binomial theorem in the above eqn:
We know that:

Thus eqn (1) becomes:


Now, putting appropriate values in the above eqn:


Answer:
a) force between them is attraction, b) F = 1.125 10⁻² N
Explanation:
In this case the electric force is given by Coulomb's law
F =
In the exercise they give us the values of the loads
q1 = - 10 mC = -10 10⁻³ C
q2 = 5 mC = 5 10⁻³ C
d = 20 cm = 0.20 m
let's calculate
F = 9 10⁹
F = 1.125 10⁻² N
To find the direction of the force we use that charges of the same sign repel each other, as in this case there is a positive and a negative charge, the force between them is attraction
The car is accelerating at 3 m/s² in the positive direction (to the right). By Newton's second law, the net force on the car in this direction is
∑ F = F[a] - F[f] - F[air] = ma
3100 N - 200 N - F[air] = (650 kg) (3 m/s²)
Solve for F[air] :
F[air] = 3100 N - 200 N - (650 kg) (3 m/s²)
F[air] = 3100 N - 200 N - 1950 N
F[air] = 950 N
5.4*10^-19 C
Explanation:
For the purposes of this question, charges essentially come in packages that are the size of an electron (or proton since they have the same magnitude of charge). The charge on an electron is -1.6*10^-19
Therefore, any object should have a charge that is a multiple of the charge of an electron - It would not make sense to have a charge equivalent to 1.5 electrons since you can't exactly split the electron in half. So the charge of any integer number of electrons can be transferred to another object.
Charge = q(electron)*n(#electrons)
Since 5.4/1.6 = 3.375, we know that it can not be the right answer because the answer is not an integer.
If you divide every other option listed by the charge of an electron, you will get an integer number.
(16*10^-19 C)/(1.6*10^-19C) = 10
(-6.4*10^-19 C)/(1.6*10^-19C) = -4
(4.8*10^-19 C)/(1.6*10^-19C) = 3
(5.4*10^-19 C)/(1.6*10^-19C) = 3.375
(3.2*10^-19C)/(1.6*10^-19C) = 2
etc.
I hope this helps!
In what may be one of the most remarkable coincidences in
all of physical science, the tangential component of circular
motion points along the tangent to the circle at every point.
The object on a circular path is moving in that exact direction
at the instant when it is located at that point in the circle. The
centripetal force ... pointing toward the center of the circle ...
is the force that bends the path of the object away from a straight
line, toward the next point on the circle. If the centripetal force
were to suddenly disappear, the object would continue moving
from that point in a straight line, along the tangent and away from
the circle.