Answer:
(a) 2.34 s
(b) 6.71 m
(c) 38.35 m
(d) 20 m/s
Explanation:
u = 20 m/s, theta = 35 degree
(a) The formula for the time of flight is given by


T = 2.34 second
(b) The formula for the maximum height is given by


H = 6.71 m
(c) The formula for the range is given by


R = 38.35 m
(d) It hits with the same speed at the initial speed.
Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
The question is about unclear since no picture provided. But from the question, it could be guessed that the box is moving back and forth on the frictionless plane at the amplitude of A in simple harmonic motion.
Answer:
D. At x=0, it's acceleration is at a maximum
Explanation:
As the box move forward, it reaches point A and than move backward. Theoretically, the box will move backwards, through its origin, to point -A and then going forward.
Point A is the maximum displacement of the box in this case. At this point, the box instantaneously stop to go backward. Therefore the velocity at that moment is zero.
From point -A, the box travel forward and keep building up speed due to the release in potential energy of the spring. And at point x=0, the velocity become maximum. After point x=0, the velocity of the box slows down due to the conversion of kinetic energy to potential energy of the spring. And as it reaches point A, it reaches zero velocity.
The same can be said as the box travels backward from point A to -A
Navigation is the art of measuring distances in order to be able to get from one place to another