The information that could be gathered about a star whose light curve has multiple symmetrical depths is ; The shape and surface variegation of the star
The light curves of a KBO ( moons and stars ) are measured as a rate of the brightness of a star in relation to time. therefore the study of the light curve having multiple symmetrical depths ( depth of brightness ) will give an information about the shape/size and the surface variegation of the star
Hence we can conclude that The information that could be gathered about a star whose light curve has multiple symmetrical depths is ; The shape and surface variegation of the star
Learn more : brainly.com/question/19573734
(a) The skater covers a distance of S=50 m in a time of t=12.1 s, so its average speed is the ratio between the distance covered and the time taken:

(b) The initial speed of the skater is

while the final speed is

and the time taken to accelerate to this velocity is t=2 s, so the acceleration of the skater is given by

(c) The initial speed of the skater is

while the final speed is

since she comes to a stop. The distance covered is S=8 m, so we can use the following relationship to find the acceleration of the skater:

from which we find

where the negative sign means it is a deceleration.
Answer:
14 m/s
Explanation:
Using the principle of conservation of energy, the potential energy is converted to kinetic energy, assuming any losses.
Kinetic energy is given by ½mv²
Potential energy is given by mgh
Where m is the mass, v is the velocity, g is acceleration due to gravity and h is the height.
Equating kinetic energy to be equal to potential energy then
½mv²=mgh
V
Making v the subject of the formula
v=√(2gh)
Substituting 9.81 m/s² for g and 10 m for h then
v=√(2*9.81*10)=14.0071410359145 m/s
Rounding off, v is approximately 14 m/s

When two bodies collide with each other in the absence of an external force, then the total final momentum of the bodies is equal to their total initial momentum.