Answer:
The driving force for (a) heat transfer is temperature difference. (b) electric current is voltage difference. (c) fluid flow is pressure or hydraulic head difference.
Explanation: (a) The driving force for heat transfer is temperature difference. Heat transfer between two mediums is possible only if the two mediums are at different temperature, the higher the temperature, the higher the heat transfer.
(b) The driving force for electric current is voltage difference. Voltage difference is defined as the potential difference in charge between two points in electrical field. For electric current to occur,the voltage must be high.
(c) The driving force for fluid flow is pressure difference or hydraulic head difference. For fluid to move upward,it requires energy.
A single reflection, like shouting at the side of a mountain and hearing
your voice come back to you, is an 'echo'.
Multiple reflection, like clapping your hands once inside a large room,
is 'reverberation'.
energy never disappears, for example, if you give some kinetic energy to a ball and it stops few seconds later, friction steals this energy to ground which ball was going on. "Law of Conservation of Energy" tell us that energy can't disappear
Answer:
20.0 cm
Explanation:
Here is the complete question
The normal power for distant vision is 50.0 D. A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Solution
Now, the power of a lens, P = 1/f = 1/u + 1/v where f = focal length of lens, u = object distance from eye lens and v = image distance from eye lens.
Given that we require a 10 % increase in the power of the lens to accommodate the image she sees clearly, the new power P' = 50.0 D + 10/100 × 50 = 50.0 D + 5 D = 55.0 D.
Also, since the object is seen clearly, the distance from the eye lens to the retina equals the distance between the image and the eye lens. So, v = 2.00 cm = 0.02 m
Now, P' = 1/u + 1/v
1/u = P'- 1/v
1/u = 55.0 D - 1/0.02 m
1/u = 55.0 m⁻¹ - 1/0.02 m
1/u = 55.0 m⁻¹ - 50.0 m⁻¹
1/u = 5.0 m⁻¹
u = 1/5.0 m⁻¹
u = 0.2 m
u = 20 cm
So, at 55.0 dioptres, the closet object she can see is 20 cm from her eye.