Answer:
So then we will have at least 75% of the data within two deviations from the mean .
So then the interval would be (97.14, 99.5)
Explanation:
Previous concepts
Chebyshev’s rule is appropriate for any distribution. "Chebyshev’s inequality applies to all distributions, regardless of shape". And is useful since provides a "minimum percentage of the observations that lies within k standard deviations of the mean. "
If k = 2, at least 3/4 of the measurements lie within 2 standard deviations to within the mean.
And the general formula is (1-1/k^2) represent the fraction of the data within the mean .
Solution to the problem
For this case we want to find the percentage of data that would be at least within two deviations from the mean so for this case the value of k =2 and if we replace we got:
So then we will have at least 75% of the data within two deviations from the mean .
For the other part we have the mean and deviation provided the interval would be:
So then the interval would be (97.14, 99.5)
Answer:
Explanation:
we can look for the final velocity of the object using the eqaution of motion as shown:
v² = u²+2gH
v is the final velocity
u is the initial velocity = 10m/s
g is the acceleration due to gravity = 9.81m/s²
H is the height of the object = 175m
Subxtitute the given parameters inti the formula and get v:
v² = 10²+2(9.81)(175)
v² = 100+3433.5
v² = 3533.5
v = √3533.5
v = 59.44m/s
Hence the final velocity of the object is 59.44m/s
Answer:
When the doctor has the syringe, it is full of air. So, now after the doctor pushes the plunger, hence the air gets released into the medicine container. After this the doctor then takes the plunger and pull it back. Now , the air gets pulled up back into the syringe, but not only does the air come in but also the medicine because of the pressure build up.
If my answer helped, please mark me as the brainliest!!
Thank You!