Answer:
c.in this 2014,396.12million pets were owned
Answer:
C) There is not sufficient evidence to support the claim that the mean attendance is greater than 523.
Step-by-step explanation:
Let μ be the the average attendance at games of the football team
The claim: the average attendance at games is over 523
Null and alternative hypotheses are:
: μ=523
: μ>523
The conclusion is failure to reject the null hypothesis.
This means that <em>test statistic</em> is lower than <em>critical value</em>. Therefore it is not significant, there is no significant evidence to accept the <em>alternative</em> hypothesis.
That is no significant evidence that the average attendance at games of the football team is greater than 523.
Answer:
<h2><u>
=</u>
<u>
57
/ 514 </u>
<u>
(Decimal: 0.110895)</u></h2>
Step-by-step explanation:
57
/ 514
<u>= 57
/ 514
</u>
<u>(Decimal: 0.110895)</u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<u></u>
<h2><u>
And if that is not what you are looking for here: </u></h2><h2><u>
</u></h2>
Rewrite the equation as
x
/14
= 5/
7
. x/
14
= 5/
7
Multiply both sides of the equation by
14.14 ⋅ x
/14
= 14
⋅
5
/7
Simplify both sides of the equation.
Tap for fewer steps...
Cancel the common factor of 14
.
Cancel the common factor.
14
⋅ x
/14
= 14
⋅
5
/7
Rewrite the expression.
x
=
14
⋅
5
/7
Simplify 14
⋅ 5/
7
.
Cancel the common factor of 7
.
Factor 7 out of 14
.
x
=
7
(
2
)
⋅
5/
7
Cancel the common factor.
x
=
7
⋅ 2
⋅ 5/
7
Rewrite the expression.
x =
2
⋅
5
Multiply 2 by 5
.
<u>x
=
10</u>
Answer: 2.236
Step-by-step explanation: The square root of 5 is expressed as √5 in the radical form and as (5)½ or (5)0.5 in the exponent form. The square root of 5 rounded up to 5 decimal places is 2.23607. It is the positive solution of the equation x2 = 5.
Answer:
<h2>12 4/8</h2>
Step-by-step explanation:
1. First step
ADD
7+4=11
7+5=12
so
11
2. Second step
Now simplify
11 12/8 = 12 4/8 = 12 1/2
----------------------------------------------------------------------------------------------------------
Thanks!
Answered by: FieryAnswererGT
#learnwithbrainly
Want to thank me? JUST MARK ME BRAINLIEST! So simple!