Answer:
- <u><em>Yes, 200 ml of fluid can be transferred to a 1-quart container.</em></u>
Explanation:
You must compare the two volumes, 200 ml and 1 quart. If 200 ml is less than or equal to 1 quart, then 200 ml of fluid can be transferred to a 1-quart container, else it is not possible.
To compare, the two volumes must be on the same system of units.
Quarts is a measure of volume equivalent to 1/4 of gallon.
One gallon is approximately 3.785 liters.
3.785 liter = 3.785 liter × 1,000 ml/liter
Then, to convert 1 quart to ml use the unit cancellation method:
- (1/4)gallon × 3.785 liter/gallon × 1,000ml / liter = 946.25 ml
Thus, you get that a 1-quart container has volume of 946.25 ml, which allows that 200ml of fluid be transferred to it.
Answer:
fH = - 3,255.7 kJ/mol
Explanation:
Because the bomb calorimeter is adiabatic (q =0), there'is no heat inside or outside it, so the heat flow from the combustion plus the heat flow of the system (bomb, water, and the contents) must be 0.
Qsystem + Qcombustion = 0
Qsystem = heat capacity*ΔT
10000*(25.000 - 20.826) + Qc = 0
Qcombustion = - 41,740 J = - 41.74 kJ
So, the enthaply of formation of benzene (fH) at 298.15 K (25.000 ºC) is the heat of the combustion, divided by the number of moles of it. The molar mass od benzene is: 6x12 g/mol of C + 6x1 g/mol of H = 78 g/mol, and:
n = mass/molar mass = 1/ 78
n = 0.01282 mol
fH = -41.74/0.01282
fH = - 3,255.7 kJ/mol
Answer:
volume of the container will decreases if pressure increases.
Explanation:
According to Boyle's law:
Pressure is inversely proportional to volume which means if pressure of a gas increases the volume of the gas will decreases as gas molecules will collide and come closer forcefully so volume will decreases. And its formula for determining volume and pressure is:
<em>PV=nRT</em>
where "R" is a ideal gas constant
"T" is temperature and
"n" is number of particles given in moles while "V" is volume and "P" is pressure.
Answer:
<h2>12 atm</h2>
Explanation:
To find the initial pressure we use the formula for Boyle's law which is

Since we are finding the initial pressure

From the question we have

We have the final answer as
<h3>12 atm</h3>
Hope this helps you