1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
3 years ago
9

Point charges q1 = 14 µC and q2 = −60 µC are fixed at r1 = (5.0î − 4.0ĵ) m and r2 = (9.0î + 7.5ĵ) m. What is the force (in N) of

q2 on q1? (Express your answer in vector form.)
Physics
1 answer:
Lostsunrise [7]3 years ago
7 0

Answer:

The force on q₁ due to q₂ is (0.00973i + 0.02798j) N

Explanation:

F₂₁ = \frac{K|q_1|q_2|}{r^2}.\frac{r_2_1}{|r_2_1|}

Where;

F₂₁ is the vector force on q₁ due to q₂

K is the coulomb's constant = 8.99 X 10⁹ Nm²/C²

r₂₁ is the unit vector

|r₂₁| is the magnitude of the unit vector

|q₁| is the absolute charge on point charge one

|q₂| is the absolute charge on point charge two

r₂₁ = [(9-5)i +(7.4-(-4))j] = (4i + 11.5j)

|r₂₁| = \sqrt{(4^2)+(11.5^2)} = \sqrt{148.25}

(|r₂₁|)² = 148.25

F_2_1=\frac{K|q_1|q_2|}{r^2}.\frac{r_2_1}{|r_2_1|} = \frac{8.99X10^9(14X10^{-6})(60X10^{-6})}{148.25}.\frac{(4i + 11.5j)}{\sqrt{148.25} }

      = 0.050938(0.19107i + 0.54933j) N

      = (0.00973i + 0.02798j) N

Therefore, the force on q₁ due to q₂ is (0.00973i + 0.02798j) N

You might be interested in
Why forces are balanced and unbalanced? need help with this the lesson is tommorow
Naya [18.7K]
"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way. 

-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down.  It's just as if there's nobody sitting on it.

-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move.  The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.

-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her.  If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.

From these examples, you can see a few things:

-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.

-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.

-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.
4 0
3 years ago
Read 2 more answers
A uniform plank 8.00 m in length with mass 50.0 kg is supported at two points located 1.00 m and 5.00 m, respectively, from the
andreev551 [17]

To solve the problem it is necessary to use Newton's second law and statistical equilibrium equations.

According to Newton's second law we have to

F = mg

where,

m= mass

g = gravitational acceleration

For the balance to break, there must be a mass M located at the right end.

We will define the mass m as the mass of the body, located in an equidistant center of the corners equal to 4m.

In this way, applying the static equilibrium equations, we have to sum up torques at point B,

\sum \tau = 0

Regarding the forces we have,

3Mg-1mg=0

Re-arrange to find M,

M = \frac{m}{3}

M = \frac{50}{3}

M = 16.67Kg

Therefore the maximum additional mass you could place on the right hand end of the plank and have the plank still be at rest is 16.67Kg

8 0
3 years ago
A neutron consists of one "up" quark of charge +2e/3 and two "down" quarks each having charge -e/3. If we assume that the down q
Anon25 [30]

Answer:

The magnitude of the electrostatic force is 120.85 N

Explanation:

We can use Coulomb's law to find the electrostatic force between the down quarks.

In scalar form, Coulomb's law states that for charges q_1 and q_2 separated by a distance d, the magnitude of the electrostatic force F between them is:

F = k \frac{|q_1q_2|}{d^2}

where k is Coulomb's constant.

Taking the values:

d = 4.6 \ 10^{-15} m

q_1 = q_2 = - \frac{e}{3} = - \frac{1.6 \ 10^{-19} \ C}{3}

and knowing the value of the Coulomb's constant:

k = 8.99 \ 10 ^{9} \frac{N m^2}{C^2}

Taking all this in consideration:

F = 8.99 \ 10 ^{9} \frac{N m^2}{C^2} \frac{ (- \frac{1.6 \ 10^{-19} \ C}{3} ) ^2}{(4.6 \ 10^{-15} m)^2}

F = 120.85  \ N

8 0
3 years ago
In general, if the temperature of a chemical reaction is increased, the reaction rateA. IncreasesB. decreasesC. remains the same
In-s [12.5K]
A. Increases

I would assume this to be the answer because heat is another form of energy. If there is more energy the molecules will become more active. This makes A the most logical answer.
6 0
3 years ago
What is saturns most distinctive feature?
a_sh-v [17]
Its prominent ring system which is composed of primarily ice particles with smaller amounts of rocky detbris. Hope this helped!
6 0
3 years ago
Other questions:
  • A 230-km-long high-voltage transmission line 2.0 cm in diameter carries a steady current of 1,100 A. If the conductor is copper
    12·2 answers
  • The temperature of water in a beaker is 45°C. What does this measurement represent?
    13·1 answer
  • A marble rolls off a table with a speed of 2.30 m/s. If the table is 1.12 m high, how far from the
    10·1 answer
  • Esmerelda may have a brain tumor. Her doctor will most likely use to view the tumor.
    6·2 answers
  • An α particle is a helium nucleus and has mass 4 u, which is "4 atomic units." suppose it collides head-on in an elastic collisi
    15·1 answer
  • What is the velocity of a rocket if it travels a distance of 2400 m in 3 s?
    11·1 answer
  • 1. Two forces act on a box as follows: F= 100 N at 02 = 170. and F2= 75 N at
    15·1 answer
  • Why is Pizza so good?
    7·2 answers
  • When water waves meet, they can combine to form new waves. In constructive waves, a ________ amplitude wave is formed. In destru
    10·1 answer
  • Convert 800 cm to meters.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!