Answer:
a. If an object's speed is constant, then its acceleration must be zero.
FALSE
As we know that acceleration is defined as the rate of change in velocity

so we can not say anything about the acceleration when speed is given to as and no information is given about velocity
b. If an object's acceleration is zero, then its speed must be constant.
TRUE
As we know that acceleration is defined as the rate of change in velocity

Since we know that if acceleration is 0 then velocity must be constant and hence speed is also constant
c. If an object's velocity is constant, then its speed must be constant.
TRUE
Since velocity is constant then it shows that its magnitude and direction both are constant so its speed is also constant.
d. If an object's acceleration is zero, its velocity must be constant.
TRUE
As we know that acceleration is defined as the rate of change in velocity

Since we know that if acceleration is 0 then velocity must be constant
e. If an object's speed is constant, then its velocity must be constant.
FALSE
Speed is just the magnitude so we can not say about its direction and hence if speed is constant then velocity may or may not change
Do you not understand how to solve for the answer?
The gravitional potential energy, relative to the bottom of the giant drop, in joules, is (9800) times (the height of the drop in meters).
That's the PE of the empty car only, not counting any hapless screaming souls who may be trapped in it at that moment.
Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Since we are only looking at the vertical height, we can use the free fall equation to find the height:
h = 0.5*g*t^2, where h is height in m, g is acceleration due to gravity (9.81 m/s^2), and t is time in seconds
h = 0.5*(9.81 m/s^2)*(3.7 s)^2
h = 67.15 m
Therefore, the 7th floor window is 67.15 m above ground level.