1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
3 years ago
14

Two blocks are attached to opposite ends of a massless rope that goes over a massless, frictionless, stationary pulley. One of t

he blocks, with a mass of 1.0 kg accelerates downward at 34g. What is the mass of the other box?

Physics
1 answer:
Marysya12 [62]3 years ago
3 0

Answer:

<h2>1/7 kg</h2>

Explanation:

Find the diagram attached for better understanding of the question.

Given the mass of one of the blocks to be 1.0kg and accelerates downward at 3/4g.

g = acceleration due to gravity.

Let the block accelerating downward be M, mass of the other body be 'm' and the acceleration of the body M be 'a'.

M = 1.0 kg and a = 3.4g

According to newton's second law; \sum fy = ma_y

For body of mass m;

T - mg = ma ... (1)

For body of mass M;

Mg - T = Ma ... (2)

Adding equation 1 ad 2;

+Mg -mg = ma + Ma

Ma-Mg = -mg-ma

M(a-g) = -m(a+g)

Substituting M = 1.0 kg and a = 3/4g into the resulting equation;

3/4 g-g = -m(3/4 g+g)

3/4 g-g = -m(7/4 g)

-g/4 = -m(7/4 g)

1/4 = 7m/4

28m = 4

m = 1/7 kg

Therefore the mass of the other box is 1/7 kg

You might be interested in
In which organelle does photosynthesis take place
kykrilka [37]
In the chloroplasts. 
6 0
3 years ago
Read 2 more answers
A train travels at a speed of 30 m/s. The train starts at an initial position of 1000 meters and travels for 30 seconds. What is
pychu [463]
1000 + 30x30 = 1900. Hope that helps
6 0
3 years ago
A baseball, which has a mass of 0.685 kg., is moving with a velocity of 38.0 m/s when it contacts the baseball bat duringwhich t
Evgen [1.6K]

Answers:

a) 65.075 kgm/s

b) 10.526 s

c) 61.82 N

Explanation:

<h3>a) Impulse delivered to the ball</h3>

According to the Impulse-Momentum theorem we have the following:

I=\Delta p=p_{2}-p_{1} (1)

Where:

I is the impulse

\Delta p is the change in momentum

p_{2}=mV_{2} is the final momentum of the ball with mass m=0.685 kg and final velocity (to the right) V_{2}=57 m/s

p_{1}=mV_{1} is the initial momentum of the ball with initial velocity (to the left) V_{1}=-38 m/s

So:

I=\Delta p=mV_{2}-mV_{1} (2)

I=\Delta p=m(V_{2}-V_{1}) (3)

I=\Delta p=0.685 kg (57 m/s-(-38 m/s)) (4)

I=\Delta p=65.075 kg m/s (5)

<h3>b) Time </h3>

This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately 1.0 cm=0.01 m:

V_{2}=V_{1}+at (6)

V_{2}^{2}=V_{1}^{2}+2ad (7)

Where:

a is the acceleration

d=0.01 m is the length the ball was compressed

t is the time

Finding a from (7):

a=\frac{V_{2}^{2}-V_{1}^{2}}{2d} (8)

a=\frac{(57 m/s)^{2}-(-38 m/s)^{2}}{2(0.01 m)} (9)

a=90.25 m/s^{2} (10)

Substituting (10) in (6):

57 m/s=-38 m/s+(90.25 m/s^{2})t (11)

Finding t:

t=1.052 s (12)

<h3>c) Force applied to the ball by the bat </h3>

According to Newton's second law of motion, the force F is proportional to the variation of momentum  \Delta p in time  \Delta t:

F=\frac{\Delta p}{\Delta t} (13)

F=\frac{65.075 kgm/s}{1.052 s} (14)

Finally:

F=61.82 N

6 0
3 years ago
Read 2 more answers
A 35 kg box rests on the back of a truck. The coefficient of static friction bet?005 (part 1 of 2)A 35 kg box rests on the back
elena-14-01-66 [18.8K]

Answer with Explanation:

We are given that

Mass of box=35 kg

Coefficient of static friction between box and truck bed=0.202

Acceleration due to gravity=9.8 m/s^2

a.We have to find the force by which the box accelerates forward.

Force by which box accelerates=\mu mg=0.202\times 9.8\times 35

Force by which box accelerates=62.286 N

b.We have to find the maximum acceleration can the truck have before the box slides.

Force =friction force

ma=\mu mg

a=\mu g=9.8\times 0.202=1.9796 m/s^2

Hence, the truck can have maximum acceleration before the box slide=1.9796 m/s^2

3 0
3 years ago
The acceleration due to gravity is lower on the Moon than on Earth. Which of the following is true about the mass and weight of
Naya [18.7K]

Mass is the same, weight is less

<h3>What is the Weight and mass on Moon ?</h3>

As we know that the mass of the object is the measurement of the quantity of the matter that is present in it

So here we can say that if the mass of the object is m then its total quantity of the matter that is present in it is given as

mass = (density) × (volume)

Now for the weight of the object is defined as the force of gravity due to planet

Fg = mg

so the weight of the object is depending on the acceleration due to gravity of the planet

As we know that the gravity of moon is smaller than the gravity of the earth so here weight on the moon will be smaller than the weight on the Earth

Learn more about Weight on Moon here:

brainly.com/question/4080619

#SPJ4

3 0
2 years ago
Other questions:
  • It is more difficult to start moving a heavy carton from rest than it is to keep pushing it with a constant velocity because
    13·2 answers
  • Is gravity considered a constant or field force?explain
    8·1 answer
  • 2. An object with moment of inertia ????1 = 9.7 x 10−4 kg ∙ m2 rotates at a speed of 3.0 rev/s. A 20 g mass with moment of inert
    9·1 answer
  • 6) Calculate the density of sulfuric acid if 35.4 mL of the acid weighs 65.14 g.
    5·2 answers
  • A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust rever
    8·1 answer
  • Petroleum contains _____ energy.<br> A. light<br> B. kinetic<br> C. chemical<br> D. mechanical
    8·2 answers
  • Which describes the current model of the atom ?
    13·1 answer
  • Help plz will give brainliest
    11·1 answer
  • How to the eath turn
    7·2 answers
  • When a 2.40-kg object is hung vertically on a certain light spring described by Hooke's law, the spring stretches 2.92 cm.(a) Wh
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!