1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
3 years ago
14

Two blocks are attached to opposite ends of a massless rope that goes over a massless, frictionless, stationary pulley. One of t

he blocks, with a mass of 1.0 kg accelerates downward at 34g. What is the mass of the other box?

Physics
1 answer:
Marysya12 [62]3 years ago
3 0

Answer:

<h2>1/7 kg</h2>

Explanation:

Find the diagram attached for better understanding of the question.

Given the mass of one of the blocks to be 1.0kg and accelerates downward at 3/4g.

g = acceleration due to gravity.

Let the block accelerating downward be M, mass of the other body be 'm' and the acceleration of the body M be 'a'.

M = 1.0 kg and a = 3.4g

According to newton's second law; \sum fy = ma_y

For body of mass m;

T - mg = ma ... (1)

For body of mass M;

Mg - T = Ma ... (2)

Adding equation 1 ad 2;

+Mg -mg = ma + Ma

Ma-Mg = -mg-ma

M(a-g) = -m(a+g)

Substituting M = 1.0 kg and a = 3/4g into the resulting equation;

3/4 g-g = -m(3/4 g+g)

3/4 g-g = -m(7/4 g)

-g/4 = -m(7/4 g)

1/4 = 7m/4

28m = 4

m = 1/7 kg

Therefore the mass of the other box is 1/7 kg

You might be interested in
A ball is thrown vertically upwards with a velocity
zhuklara [117]

Answer:

Explanation:

The acceleration of gravity is 9.8m/s^2.

So to calculate the time it will take to make the ball stop(which btw means the ball now reach its greatest height), use the formula V1=V0+at. V1 is the final velocity(which is 0), V0 is the starting velocity(which is 30m/s), and the a(cceleration) is 9.8m/s^2.

(You can ignore the fact "at" is -30 instead 30, it's because the directions two velocity travel are opposite. )

We can now know the time it takes to make the ball stop just by the gravitational force is about 3 sec.

Use another formula S=1/2at^2, to find out the S(height) is 1/2*9.8*3^2=44.1, which is approximately D.45m .

6 0
3 years ago
A brick of mass 2.0kg is at rest. It falls to the ground through a
Lisa [10]

Answer:

I may not have the answer so i'll just give up some hints.

Multiply the time by the acceleration due to gravity to find the velocity when the object hits the ground. If it takes 9.9 seconds for the object to hit the ground, its velocity is (1.01 s)*(9.8 m/s^2), or 9.9 m/s. Choose how long the object is falling. In this example, we will use the time of 8 seconds. Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt = 0 + 9.80665 * 8 = 78.45 m/s . Find the free fall distance using the equation s = (1/2)gt² = 0.5 * 9.80665 * 8² = 313.8 m .h = 0.5 * 9.8 * (1.5)^2 = 11m. b. V = gt = 9.8 * 1.5 = 14.7m/s. A feather and brick dropped together. Air resistance causes the feather to fall more slowly. If a feather and a brick were dropped together in a vacuum—that is, an area from which all air has been removed—they would fall at the same rate, and hit the ground at the same time.When an object's point is taller the thing that is going down it will go faster than when the point is lower. EXAMPLE: The object is the tennis ball if you drop it down the higher hill it will be faster than if you drop it down a shorter hill. In other words, if two objects are the same size but one is heavier, the heavier one has greater density than the lighter object. Therefore, when both objects are dropped from the same height and at the same time, the heavier object should hit the ground before the lighter one.

I hope my little bit (big you may say) hint help you with your question.

5 0
3 years ago
If you jumped out of a plane, you would begin speeding up as you fall downward. Eventually, due to wind resistance, your velocit
MrRa [10]

Answer:

Mg or your weight.

Explanation:

When your velocity is constant, the net force acting on you is 0. That means the upwards force of air resistance must fully balance the downwards force of gravity on you, which is Mg.

5 0
3 years ago
A friend in your class tells you that she never uses hints when doing her Mastering homework. She says that she finds the hints
AnnZ [28]

Answer:

A, B, and C are good reasons for my friend not to worry

Explanation:

The following reasons are reason not to worry

A. The only way to lose additional partial credit on a hint is by using the "give up" button or entering incorrect answers. Leaving the question blank will not cost you any credit (Regardless of whether you open a link or not, you will lose credit if you enter a wrong answer or if you give up on a question by hitting the "give up" button. Even after opening a hint, you can leave the question blank if the hint does not provide relevant hints or if the hint brings up more question. Once the question is left blank, you do not lose additional partial credit)

B. As an incentive for thinking hard about the problem, your instructor may choose to apply a small hint penalty, but this penalty is the same whether the hint simply gives information or asks another question (In a situation where you decide to use a hint, the instructor may have put a penalty for using the hint, so whether it asks a question or help in the solution of the question, as long as the hint is consulted, the hint penalty still applies)

C. Getting the correct answer to the question in a hint actually gives you some partial credit, even if you still can't answer the original question (An advantage of using hint is that you get some partial credit for using it if you answer the hint question correctly and fails to answer the original question)

6 0
3 years ago
If the distance between the Earth and Moon were half what it is now, by what factor would the force of gravity between them be c
hichkok12 [17]

Answer:

4

Explanation:

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

m_1 = Mass of Earth

m_2 = Mass of Moon

r = Distance between Earth and Moon

Old gravitational force

F_o=\dfrac{Gm_1m_2}{r^2}

New gravitational force

F_n=\dfrac{Gm_1m_2}{(\dfrac{1}{2}r)^2}

Dividing the equations

\dfrac{F_n}{F_o}=\dfrac{\dfrac{Gm_1m_2}{(\dfrac{1}{2}r)^2}}{\dfrac{Gm_1m_2}{r^2}}\\\Rightarrow \dfrac{F_n}{F_o}=\dfrac{\dfrac{Gm_1m_2}{\dfrac{1}{4}r^2}}{\dfrac{Gm_1m_2}{r^2}}\\\Rightarrow \dfrac{F_n}{F_o}=4

The ratio is \dfrac{F_n}{F_o}=4

The new force would be 4 times the old force

7 0
3 years ago
Other questions:
  • A 3 kg rock sits on a 0.8 meter ledge. If it is pushed off, how fast will it be going at the bottom?
    13·1 answer
  • 1. How is electric potential energy similar to gravitational potential energy? How is it different? Where will an electron bound
    5·1 answer
  • In __________ waves, the motion of the particles in a medium is across the direction of the wave (perpendicular).
    9·1 answer
  • 4 Points
    6·2 answers
  • What is the purpose of the lab, the importance of the topic, and the question you are trying to answer?
    6·2 answers
  • _________ are exchanged or shared during the formation of a chemical bond. A) Orbitals B) Sublevels C) Valence electrons D) Suba
    9·2 answers
  • The term relative intensity is used to denote the amount of energy expended per minute.
    5·1 answer
  • A physics student swings a tennis ball connected to a rope in a vertical circle with a constant speed of 6.29 m/s. The ball has
    13·1 answer
  • By what means can the internal energy of a closed system increase?.
    11·2 answers
  • The 7.4 N weight is in equilibrium under
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!