1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nexus9112 [7]
3 years ago
11

What are the dimensions?

Mathematics
1 answer:
Rzqust [24]3 years ago
8 0

The answer is C, good luck

You might be interested in
How is this solved using trig identities (sum/difference)?
GenaCL600 [577]
FIRST PART
We need to find sin α, cos α, and cos β, tan β
α and β is located on third quadrant, sin α, cos α, and sin β, cos β are negative

Determine ratio of ∠α
Use the help of right triangle figure to find the ratio
tan α = 5/12
side in front of the angle/ side adjacent to the angle = 5/12
Draw the figure, see image attached

Using pythagorean theorem, we find the length of the hypotenuse is 13
sin α = side in front of the angle / hypotenuse
sin α = -12/13

cos α = side adjacent to the angle / hypotenuse
cos α = -5/13

Determine ratio of ∠β
sin β = -1/2
sin β = sin 210° (third quadrant)
β = 210°

cos \beta = -\frac{1}{2}  \sqrt{3}

tan \beta= \frac{1}{3}  \sqrt{3}

SECOND PART
Solve the questions
Find sin (α + β)
sin (α + β) = sin α cos β + cos α sin β
sin( \alpha + \beta )=(- \frac{12}{13} )( -\frac{1}{2}  \sqrt{3})+( -\frac{5}{13} )( -\frac{1}{2} )
sin( \alpha + \beta )=(\frac{12}{26}\sqrt{3})+( \frac{5}{26} )
sin( \alpha + \beta )=(\frac{5+12\sqrt{3}}{26})

Find cos (α - β)
cos (α - β) = cos α cos β + sin α sin β
cos( \alpha + \beta )=(- \frac{5}{13} )( -\frac{1}{2} \sqrt{3})+( -\frac{12}{13} )( -\frac{1}{2} )
cos( \alpha + \beta )=(\frac{5}{26} \sqrt{3})+( \frac{12}{26} )
cos( \alpha + \beta )=(\frac{5\sqrt{3}+12}{26} )

Find tan (α - β)
tan( \alpha - \beta )= \frac{ tan \alpha-tan \beta }{1+tan \alpha  tan \beta }
tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3}   }{1+(\frac{5}{12}) ( \frac{1}{2} \sqrt{3})}

Simplify the denominator
tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3}   }{1+(\frac{5\sqrt{3}}{24})}
tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3} }{ \frac{24+5\sqrt{3}}{24} }

Simplify the numerator
tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{6}{12} \sqrt{3} }{ \frac{24+5\sqrt{3}}{24} }
tan( \alpha - \beta )= \frac{ \frac{5-6\sqrt{3}}{12} }{ \frac{24+5\sqrt{3}}{24} }

Simplify the fraction
tan( \alpha - \beta )= (\frac{5-6\sqrt{3}}{12} })({ \frac{24}{24+5\sqrt{3}})
tan( \alpha - \beta )= \frac{10-12\sqrt{3} }{ 24+5\sqrt{3}}

7 0
3 years ago
What is the value of F(5) in the function below?
Sever21 [200]

Answer:

<h2>B. 243</h2><h2 />

Step-by-step explanation:

F(x) = 3^x

then

F(5) = 3^5 = 3×3×3×3×3 =243

6 0
4 years ago
1. an alloy contains zinc and copper in the ratio of 7:9 find weight of copper of it had 31.5 kgs of zinc.
m_a_m_a [10]

Answer:

Step-by-step explanation:

Question (1). An alloy contains zinc and copper in the ratio of 7 : 9.

If the weight of an alloy = x kgs

Then weight of copper = \frac{9}{7+9}\times (x)

                                      = \frac{9}{16}\times (x)

And the weight of zinc = \frac{7}{7+9}\times (x)

                                      = \frac{7}{16}\times (x)

If the weight of zinc = 31.5 kg

31.5 = \frac{7}{16}\times (x)

x = \frac{16\times 31.5}{7}

x = 72 kgs

Therefore, weight of copper = \frac{9}{16}\times (72)

                                               = 40.5 kgs

2). i). 2 : 3 = \frac{2}{3}

        4 : 5 = \frac{4}{5}

Now we will equalize the denominators of each fraction to compare the ratios.

\frac{2}{3}\times \frac{5}{5} = \frac{10}{15}

\frac{4}{5}\times \frac{3}{3}=\frac{12}{15}

Since, \frac{12}{15}>\frac{10}{15}

Therefore, 4 : 5 > 2 : 3

ii). 11 : 19 = \frac{11}{19}

    19 : 21 = \frac{19}{21}

By equalizing denominators of the given fractions,

\frac{11}{19}\times \frac{21}{21}=\frac{231}{399}

And \frac{19}{21}\times \frac{19}{19}=\frac{361}{399}

Since, \frac{361}{399}>\frac{231}{399}

Therefore, 19 : 21 > 11 : 19

iii). \frac{1}{2}:\frac{1}{3}=\frac{1}{2}\times \frac{3}{1}

             =\frac{3}{2}

     \frac{1}{3}:\frac{1}{4}=\frac{1}{3}\times \frac{4}{1}

              = \frac{4}{3}

Now we equalize the denominators of the fractions,

\frac{3}{2}\times \frac{3}{3}=\frac{9}{6}

And \frac{4}{3}\times \frac{2}{2}=\frac{8}{6}

Since \frac{9}{6}>\frac{8}{6}

Therefore, \frac{1}{2}:\frac{1}{3}>\frac{1}{3}:\frac{1}{4} will be the answer.

IV). 1\frac{1}{5}:1\frac{1}{3}=\frac{6}{5}:\frac{4}{3}

                  =\frac{6}{5}\times \frac{3}{4}

                  =\frac{18}{20}

                  =\frac{9}{10}

Similarly, \frac{2}{5}:\frac{3}{2}=\frac{2}{5}\times \frac{2}{3}

                       =\frac{4}{15}                  

By equalizing the denominators,

\frac{9}{10}\times \frac{30}{30}=\frac{270}{300}

Similarly, \frac{4}{15}\times \frac{20}{20}=\frac{80}{300}

Since \frac{270}{300}>\frac{80}{300}

Therefore, 1\frac{1}{5}:1\frac{1}{3}>\frac{2}{5}:\frac{3}{2}

V). If a : b = 6 : 5

     \frac{a}{b}=\frac{6}{5}

        =\frac{6}{5}\times \frac{2}{2}

        =\frac{12}{10}

  And b : c = 10 : 9

  \frac{b}{c}=\frac{10}{9}

 Since a : b = 12 : 10

 And b : c = 10 : 9

 Since b = 10 is common in both the ratios,

 Therefore, combined form of the ratios will be,

 a : b : c = 12 : 10 : 9

7 0
3 years ago
Sam bought 2 3/4 pounds of shrimp and 2 1/2 pounds of crabmeat. How much seafood did he buy?
marin [14]
Sam bought 5 1/4 pounds of seafood. 
6 0
4 years ago
Read 2 more answers
What is 29/33 in simplest form
Oduvanchick [21]
29/33 is already in simplest fraction form

29 is a prime number and cannot be simplified more
6 0
3 years ago
Read 2 more answers
Other questions:
  • The x-coordinate of an ordered pair specifies the
    6·1 answer
  • The total dinner bill for five persons at a restaurant was $203.25. What was the average cost per person in dollars ?
    8·1 answer
  • What relationship exists between N and K? Given: KLMN is a parallelogram.
    14·2 answers
  • Find the length of AH for which MATH is a parallelogram.<br>A. 3B. 4C. 6D. 10
    8·2 answers
  • Select the choice that translates the following verbal phrase correctly to algebra: the product of k and m
    14·1 answer
  • Which equation represents a circle with a center at (-3,-5) and a radius of 6 units?
    6·2 answers
  • Write an equation of the line that passes through (-5, -2) and is parallel to y=2/3x+1<br><br> y=?
    12·2 answers
  • Which triangle congruence is this?<br> SSS<br> SAS<br> AAS<br> ASA<br> HL
    7·1 answer
  • Help plsssssssssssss
    5·2 answers
  • ILL BRAINLIEST YOU IF YOU GET IT RIGHT
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!