The equation for potassium in water is:
K(s) + H20(l) --> H2(g) + K20(aq)
since a element and a compound are reacting, this is a single replacement reaction - which is a)
Acceleration = V^2/r = 18^2/ 30 = 10.8 m/s^2
The medicine ball wall hit the ground faster, if that makes sense to you
Answer:
<h2>9.3kN</h2>
Explanation:
Step one:
given data
mass of bullet= 0.02kg
speed v=700m/s
time taken =1.5ms= 0.0015 seconds
Step two:
we know that from the first law
F=ma-----1 first law of motion
also, we know that
a=v/t----2
put a=v/t in equation 1 we have
F=mv/t
Step three:
substitute our given data to find force
F=0.02*700/0.0015
F=14/0.0015
F=9333.33N
F=9.3kN
<u>The average force exerted is 9.3kN</u>
Answer:
5398.4km/h
Explanation:
IN THIS CASE THE MOMENTUM IS CONSERVED. THE VALUE OF MOMENTUM OF ONE COMBINED ROCKET WILL BE SAME AS OF TWO COMBINED.
Let mass of module be m
then
mass of motor = 4m (four times the mass of rocket module)
total mass = m + 4m = 5m
combined velocity = V = 5320kph
Let
absolute (relative to earth)motor velocity after disengagement = v
then
rocket module velocity (relative to earth) after disengagement = v+98 (relative velocity = 98)
momentum conservation equation
combined momentum = module momentum + motor momentum
(m+4m)V = m(v+98) + 4m*v
5mV = 98m+mv + 4mv
5V = 98+v + 4v (m cancels out)
5V - 98 = 5v
((5*5320)-98)/5 = v
v = 5300.4 km/h
velocity of rocket module relative to earth = v +98
= 5300.4 + 98
= 5398.4km/h