Answer:
Explanation:
a) ωp = 2π radians / 1.7 s = <u>3.7 rad/s</u>
b) ωs = 3.7 rad/s(9.5 cm / 4.5 cm) = 7.8 rad/s
v = (ωs)R = 7.8(65) = 507 cm/s or <u>5.1 m/s</u>
c) ωs = 3.5 m/s / 0.65 m = 5.38 rad/s
ωp = 5.38(4.5 cm / 9.5 cm) = 2.55 rad/s
t = θ/ω = 2π / 2.55 = 2.463... <u>2.5 s</u>
Answer:
1/3 the distance from the fulcrum
Explanation:
On a balanced seesaw, the torques around the fulcrum calculated on one side and on another side must be equal. This means that:

where
W1 is the weight of the boy
d1 is its distance from the fulcrum
W2 is the weight of his partner
d2 is the distance of the partner from the fulcrum
In this problem, we know that the boy is three times as heavy as his partner, so

If we substitute this into the equation, we find:

and by simplifying:

which means that the boy sits at 1/3 the distance from the fulcrum.
Http://earthguide.ucsd.edu/virtualmuseum/virtualmuseum/OriginofGulfStream.shtml this website might help u find ur answer
Answer:
54.67 N
Explanation:
The total energy produced is the product of power and time duration:
E = Pt = 82 * 1 = 82 J
Which is converted from work, product of forced extended over a displacement
W = E = Fs = F*1.5 = 82
F = 82 / 1.5 = 54.67 N
So the magnitude of the force exerting on the handle is 54.67 N