The net force acting on the car is 65 N to the left
The net force acting on an object is simply defined as the resultant force acting on the object.
From the question given, we obtained the following data:
- Force applied to the right (Fᵣ) = 250 N
- Force applied to the left (Fₗ) = 315 N
- Net force (Fₙ) =?
The net force acting on the car can be obtained as follow:
Fₙ = Fₗ – Fᵣ
Fₙ = 315 – 250
<h3>Fₙ = 65 N to the left </h3>
Therefore, the net force acting on the car is 65 N to the left
Learn more on net force: brainly.com/question/19549734
Answer:
this is a good suggestion
Explanation:
when the sugar cubes are crushed and they become a powder so its surface area increases. And as surface area is directly proportional to rate of reaction so the desired solution will be formed rapidly
230 Newton
Electric charge consists of two types i.e. positively electric charge and negatively electric charge.There was a famous scientist who investigated about this charges. His name is Coulomb and succeeded in formulating the force of attraction or repulsion between two charges i.e. :
F = electric force (N)
k = electric constant (N m² / C²)
q = electric charge (C)
r = distance between charges (m)
The value of k in a vacuum = 9 x 10⁹ (N m² / C²)
F = k(q1 q2)/ r^2
Distance between protons = d = 10⁻¹⁵ m
charge of proton = q = 1.6 × 10⁻¹⁹ C
Here q1=q2
electric force = F =230N
Coulomb's Law. Two protons in an atomic nucleus are typically separated by a distance of 2×10−15m. The electric repulsive force between the protons is huge, but the attractive nuclear force is even stronger and keeps the nucleus from bursting apart.
2 Nuclei and the Need for an Attractive Nuclear Force. The Coulomb force also acts within atomic nucleii, whose characteristic dimension is 10 m, which is called a fermi. There are two protons in a He nucleus, which repel each other because of the Coulomb force.
Find more about electric force of repulsion between nuclear protons
brainly.com/question/8404637
#SPJ4
Mass is <span>is a dimensionless quantity representing the amount of matter in a particle or object. The more mass something has, the more energy is used to lift it.</span>
Answer:
Yes, it is the heaviest gas.
Explanation: