Answer:
The magnitude of force is 1.86 N and the direction of force is towards the other wire.
Explanation:
Given:
Current flowing through each power line, I = 130 A
Distance between the two power lines, d = 40 cm = 0.4 m
Length of power lines, L = 220 m
The force exerted by the power lines on each other is given by the relation:
Substitute the suitable values in the above equation.
F = 1.86 N
Since the direction of current flowing through the power lines are opposite to each other, so the force is attractive in nature. Hence, the direction of force experienced by the power lines on each other is towards the each other.
So i converted everything first;
<span>7.0 C ---> 280 K </span>
<span>49 mL---> 0.049 L </span>
<span>74mL---> 0.074 L </span>
<span>THEN I tried setting it up by the combined law formula which is P1V1/T1=P2V2/T2 </span>
Answer
given,
mass of the rod = 1.50 Kg
length of rod = 0.85 m
rotational velocity = 5060 rev/min
now calculating the rotational inertia of the system.
where L is the length of road, we will take whole length of rod because mass is at the end of it.
I = 1.084 kg.m²
hence, the rotational inertia the system is equal to I = 1.084 kg.m²
-- The vertical component of the ball's velocity is 14 sin(<span>51°) = 10.88 m/s
-- The acceleration of gravity is 9.8 m/s².
-- The ball rises for 10.88/9.8 seconds, then stops rising, and drops for the
same amount of time before it hits the ground.
-- Altogether, the ball is in the air for (2 x 10.88)/(9.8) = 2.22 seconds
==================================
-- The horizontal component of the ball's velocity is 14 cos(</span><span>51°) = 8.81 m/s
-- At this speed, it covers a horizontal distance of (8.81) x (2.22) = <em><u>19.56 meters</u></em>
before it hits the ground.
As usual when we're discussing this stuff, we completely ignore air resistance.
</span>
It is a battery (the long and short lines represent 2 cells)