Ans: Time <span>taken by a pulse to travel from one support to the other
= 0.348s</span>
Explanation:First you need to find out the speed of the wave.
Since
Speed = v =

Where
T = Tension in the cord = 150N
μ = Mass per unit length = mass/Length = 0.65/28 = 0.0232 kg/m
So
v =

= 80.41 m/s
Now the time-taken by the wave = t = Length/speed = 28/80.41=
0.348s
Answer:
2 seconds
Explanation:
The frequency of a wave is related to its wavelength and speed by the equation

where
f is the frequency
v is the speed of the wave
is the wavelength
For the wave in this problem,
v = 2 m/s

So the frequency is

The period of a wave is equal to the reciprocal of the frequency, so for this wave:

This means that the wave takes 4 seconds to complete one full cycle.
Therefore, the time taken for the wave to go from a point with displacement +A to a point with displacement -A is half the period, therefore for this wave:

Answer:
strong winds that blow for a long time over a great distance
weak winds that blow for short periods of time with a short fetch
Explanation:
When the winds are weak and blow for short periods, we experience the smallest ocean waves but when there are strong winds over a longer duration, the largest ocean waves are seen. Therefore, the conditions to produce the smallest and largest ocean waves are strong winds that blow for a long time over a great distance and weak winds that blow for short periods of time with a short fetch.
To calculate instantaneous speed, we need to divide part of the total distance traveled by time. However, we don't want to use the distance of the entire trip, because that will give us average speed.