Answer:
Explanation:
Net force would be the one causing the acceleration or
F = ma = 0.126(3.0) = 0.378 N
If it's not moving at all at the beginning of the 10 seconds, then it falls 490 meters straight down in 10 seconds.
(Note: This is true of all objects on Earth . . . rubber balls, feathers, grains of sand, school buses, battle ships . . . everything. As long as air doesn't hold them back. Anything falling from rest falls 490 meters in the first 10 seconds.)
Answer:
v = √ 2e (V₂-V₁) / m
Explanation:
For this exercise we can use the conservation of the energy of the electron
At the highest point. Resting on the top plate
Em₀ = U = -e V₁
At the lowest point. Just before touching the bottom plate
Emf = K + U = ½ m v² - e V₂
Energy is conserved
Em₀ = Emf
-eV₁ = ½ m v² - e V₂
v = √ 2e (V₂-V₁) / m
Where e is the charge of the electron, V₂-V₁ is the potential difference applied to the capacitor and m is the mass of the electron
The given question is incomplete. The complete question is:
Estimate the volume of each ball. Use the formula
where v is the volume and r is the radius. record the volume in table A of your student guide. The radius of the tennis ball is 2.1 cm and the radius of thr golf ball is 2.0 cm. What is the estimated volume of the table tennis ball in
What is the estimated volume of the golf ball in
Answer: Volume of the tennis ball is
and Volume of the golf ball is 
Explanation:
We have to find the Volume of tennis ball and golf ball by using the formula 
Radius of the tennis ball = 2.1 cm
Radius of the golf ball =2.0 cm.
Putting the value of radius in the formula , we get:
Volume of the tennis ball = 
Volume of the golf ball = 
Volume of the tennis ball is
and Volume of the golf ball is 
Answer:
The moment of inertia of the wheel is 0.593 kg-m².
Explanation:
Given that,
Force = 82.0 N
Radius r = 0.150 m
Angular speed = 12.8 rev/s
Time = 3.88 s
We need to calculate the torque
Using formula of torque



Now, The angular acceleration


We need to calculate the moment of inertia
Using relation between torque and moment of inertia




Hence, The moment of inertia of the wheel is 0.593 kg-m².