Answer:
What can liquids do that solids cannot?Liquids will flow and fill up any shape of container. Solids like to hold their shape. In the same way that a large solid holds its shape, the atoms inside of a solid are not allowed to move around too much. Atoms and molecules in liquids and gases are bouncing and floating around, free to move where they want.
What can gases do that solids cannot?The atoms and molecules in gases are much more spread out than in solids or liquids. They vibrate and move freely at high speeds. A gas will fill any container, but if the container is not sealed, the gas will escape. Gas can be compressed much more easily than a liquid or solid.
I hope this helps
Explanation:
According to the analysis, Molarity is amount mole per volume(1L). the amount in mole would be molarity × volume in litres.
0.500M × (250/1000)L= 0.125moles.
I hope this helps**
109.5
tetrahedral shape:
number of electron pair = 4,
number of bonded pair = 4,
number of lone pair = 0.
Answer:
Molecular compounds consist of two or more nonmetals. The nonmetals that make up a molecular compound are held together by covalent/molecular bonds. Covalent bonds is known as the "sharing" of valence electrons between two or more chemical species. Valence electrons are shared so that the atoms of the compound can become stable, much like how ionic bonds transfer valence electrons between atoms to achieve stability.
Answer:
Mg(NO4)2 is 180.3 g/mol
Explanation:
First find the substance formula.
Magnesium Nitrate.
Magnesium is a +2 charge.
Nitrate is a -1 charge.
So to balance the chemical formula,
We need 1 magnesium atom for every nitrate atom.
2(1) + 1(-2) = 0
So the substance formula is Mg(NO4)2.
Now find the molar mass of Mg(NO4)2.
Mg = 24.3 amu
N = 14.0 amu
O = 16.0 amu
They are three nitrogen and twelve oxygen atoms.
So you do this: 24.3 + 14.0(2) + 16.0(8) = 180.3 g/mol
So the molar is mass is 180.3 g/mol.
The final answer is Mg(NO4)2 is 180.3 g/mol
Hope it helped!