Answer:
A free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N.
Explanation:
This is because at terminal velocity, the ball stops accelerating and the net force on the ball is zero. For the net force to be zero, equal and opposite forces must act on the ball, so that their resultant force is zero. That is F₁ + F₂ = 0 ⇒ F₁ = -F₂
Since F₁ = 20 N, then F₂ = -F₁ = -20 N
So, if F₁ points upwards since it is positive, then F₂ points downwards since it is negative.
So, a free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N best describes the ball falling at terminal velocity.
Answer:
0 N
Explanation:
This is a trick question, the mass of the wrench would be 0 due to it being in space and has no gravitational pull to weight it down. And since acceleration is defined as the rate and change of velocity with no respect of time and the wrench is moving at a constant velocity, that means the velocity is 0. and since F = m*a it would be F = 0 * 0 = 0 N
Answer:
45.8 cm
Explanation:
To solve this, we will use the formula
5 / x² = 7/(1 - x)²
5 / x² = 7 / (1 - 2x + x²)
5 / 7 = x² / (1 - 2x + x²)
x = 0.5 * (√(35) - 5) meters
x = 0.5 * (5.916 - 5)
x = 0.5 * (0.916)
x = 0.458 or x = 45.8
Answer:
<em>D. The acceleration after it leaves the hand is 10 m/s/s downwards
</em>
Explanation:
<u>Vertical Throw
</u>
When an object is thrown upwards, it describes a special type of motion ruled only by gravity.
When the ball is launched, it has its maximum speed upwards. The acceleration of gravity is always the same because it's a constant value near our planet's surface. The object starts to lose speed since the acceleration of gravity is pointed downwards and makes the object stop in the mid-air at its maximum height, where the speed is zero. Then, the object starts to fall and regain speed, this time downwards until it reaches back the launching point at the very same speed it was launched, but in the opposite direction.
The time it takes to reach its maximum height is the same it takes to return to the catching point, 2 seconds later.
With all these concepts in mind, we state that:
<em>D. The acceleration after it leaves the hand is 10 m/s/s downwards </em>
The other options are not correct because:
A. The acceleration is never upwards
B. The acceleration is never 0
C. Both times are equal
Answer:
B) -1m/s^2
Explanation:
Final speed = 0 m/s
Initial speed = 5m/s
Time taken for it to come to rest(0m/s) = 5
then use the formula;
[v = u + at],where v is the final speed..u is the initial speed..t is time taken for it to come to rest and a is the acceleration
; 0 = 5 + 5a
; -5 = 5a
;Acceleration = -1 m/s^2