Answer:
(a) 37.5 kg
(b) 4
Explanation:
Force, F = 150 N
kinetic friction coefficient = 0.15
(a) acceleration, a = 2.53 m/s^2
According to the newton's second law
Net force = mass x acceleration
F - friction force = m a
150 - 0.15 x m g = m a
150 = m (2.53 + 0.15 x 9.8)
m = 37.5 kg
(b) As the block moves with the constant speed so the applied force becomes the friction force.

ionic compound. The atom that lost the electron becomes a cation, and the atom that gains an electron becomes an anion. The cation and anion bond together because they have opposite charges to form an ionic compound. The question may be looking for just cation or anion, though.
The answer is the last choice.
Its electrical potential energy stays the same because it has the same electric potential. The reason why is that moving the charge towards X does not change the distance of the negative charge between the plates. The Electrical potential energy of a particle is the result energy by virtue of its position from the electrical fields produce by the plates both positive and negative. Since the charge is still equidistant to each other (assuming based from the diagram) no change in terms of electrical energy consumption or work was done.
Answer:
V = 3.6385 m/s
θ = 47.46 degrees
Explanation:
the important data in the question is:
Skater 1:
= 39.6 kg
direction: south (axis y)
= 6.21 m/s
Skater 2:
= 52.1 kg
direction: east (axis x)
= 4.33 m/s
Now using the law of the conservation of linear momentum (
and knowing that the collision is inelastic we can do the next equations:
(eq. 1)
(eq. 2)
Where
and
is the velocity of the sistem in x and y after the collision.
Note: the conservation of the linear momentum have to be make once by each axis.
Now, in the (eq. 1) the skater 1 don't have velocity in the axis x, so we can replace
by 0 in the equation and get:
(eq. 1)
also, in the (eq. 2) the skater 2 don't have velocity in the axis y, so we can replace
by 0 in the equation and get:
(eq. 2)
Now, we just replace the data in both equations:
(eq. 1)
(eq. 2)
solving for
and
we have:
= 2.46 m/s
= 2.681 m/s
using the pythagoras theorem we can find the magnitude of the velocity as:
V = 
V = 3.6385 m/s
For find the direction we just need to do this;
θ = 
θ = 47.46 degrees
The answer is 4s per in the total of Distance Of Kilometers.