Answer:
The magnitude of the acceleration ae of the earth due to the gravitational pull of the moon is
Explanation:
By Newton's gravitational law, the magnitude of the gravitational force between two objects is:
(1)
With G the gravitational constant, M the mass of earth, m the mass of the moon and r the distance between the moon and the earth, a quick search on physics books or internet websites give us the values:




Using those values on (1)


Now, by Newton's second Law we can find the acceleration of earth ae due moon's pull:

Answer
given,
Length of the string, L = 2 m
speed of the wave , v = 50 m/s
string is stretched between two string
For the waves the nodes must be between the strings
the wavelength is given by

where n is the number of antinodes; n = 1,2,3,...
the frequency expression is given by

now, wavelength calculation
n = 1

λ₁ = 4 m
n = 2

λ₂ = 2 m
n =3

λ₃ = 1.333 m
now, frequency calculation
n = 1


f₁ = 12.5 Hz
n = 2


f₂= 25 Hz
n = 3


f₃ = 37.5 Hz
Answer:
the square root of 25 is 5
Explanation:

When you squish the spring, you put some energy into it, and after the cord
burns and they go boing in opposite directions, that energy that you stored
in the spring is what gives the blocks their kinetic energy.
But linear momentum still has to be conserved. It was zero while they were
tied together and nothing was moving, so it has to be zero after they both
take off.
Momentum = (mass) x (velocity)
After the launch, the 5.5-kg moves to the right at 6.8 m/s,
so its momentum is
(5.5 x 6.8) = 37.4 kg-m/s to the right.
In order for the total momentum to be zero, the other block has to
carry the same amount of momentum in the opposite direction.
M x V = (6 x speed) = 37.4 kg-m/s to the left.
Divide each side by 6 : Speed = 37.4 / 6 =<em> 6.2333... m/s left</em>
(That number is (6 and 7/30) m/s .)
Particles begin to move out of their ordered arrangement due to energy. They are unable to escape because of external pressure pushing down on the liquid.