Answer: Magnetizim
Explanation: Magnetic Atoms collide creating magnetizim
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
To solve this problem we will apply the concepts related to the balance of forces. We will decompose the forces in the vertical and horizontal sense, and at the same time, we will perform summation of torques to eliminate some variables and obtain a system of equations that allow us to obtain the angle.
The forces in the vertical direction would be,



The forces in the horizontal direction would be,



The sum of Torques at equilibrium,




The maximum friction force would be equivalent to the coefficient of friction by the person, but at the same time to the expression previously found, therefore


Replacing,


Therefore the minimum angle that the person can reach is 46.9°
Answer:
option c
Explanation:
The temperature must be constant. Ohms law states that the current running through a conductor is directly proportional to the potential difference across it provided the temperature remains constant
Power = 1800W (or 1.8KW by dividing by 1000)
Time = 3 hours
Power = energy/ time
1.8KW = energy/ 3
x3
5.4Kw/h= energy
(5.4KJ or 5400J used)
$0.15 Kw/h
$0.15 X 5.4 = 0.81
Thus, cost $0.81
Hope this helps!