The easiest way to explain it is roughly identical to the way that your teacher explained it in class. If there were any easier way ... like writing it here in a few paragraphs ... then that's what the teacher would have done. You would have been given the easy explanation on the first day of class, printed on one sheet of paper, and you would have had the rest of the year to practice it and get really good at it.
If the class spent a month teaching it, then that's about how long it takes. Sorry.
Power = Iω (constant) as they are connected together, since effort axle has large radius than resistance axle, so moment of inertia of effort axle is also more as compared to resistance axle, so angular speed of effort axle is less than the resistance axle. So answer is B. resistance axle will have more angular speed as its moment of inertia is less for the same power.
Answer:
location of battery in this diagram is at A and location of switch is at B.
It is true because <span>A pyramid of biomass is a representation of the amount of energy contained in biomass, at different trophic levels for a given point in time . The amount of energy available to one trophic level is limited by the amount stored by the level below. Because energy is lost in the transfer from one level to the next, there is successively less total energy as you move up trophic levels. Tree is a base as it provides food and energy.</span>
Answer:
The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to other forces of nature.It applies to the cosmological and astrophysical realm, including astronomy.
The theory transformed theoretical physics and astronomy during the 20th century, superseding a 200-year-old theory of mechanics created primarily by Isaac Newton. It introduced concepts including spacetime as a unified entity of space and time, relativity of simultaneity, kinematic and gravitational time dilation, and length contraction. In the field of physics, relativity improved the science of elementary particles and their fundamental interactions, along with ushering in the nuclear age. With relativity, cosmology and astrophysics predicted extraordinary astronomical phenomena such as neutron stars, black holes, and gravitational waves