Answer:
This could be done if a stop watch is used to calculate the time taken to hear the echo and a rule should be used to calculate the distance between the bricks and the wall. Then divide distance by time
Explanation:
I hope this is what you need
PLEASE MAKE ME BRAINLIEST
Answer:
A
Explanation:
A. The pencil is on the table in broad daylight
Alveoli are tiny balloon shaped structures and are the smallest passageway in the respiratory system. The alveoli are only one cell thick, allowing the relatively easy passage of oxygen and carbon dioxide (CO2) between the alveoli and blood vessels called capillaries.
Answer:
the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Explanation:
Given:
Diameter of the pipe = 100mm = 0.1m
Contraction ratio = 0.5
thus, diameter at the throat of venturimeter = 0.5×0.1m = 0.05m
The formula for discharge through a venturimeter is given as:

Where,
is the coefficient of discharge = 0.97 (given)
A₁ = Area of the pipe
A₁ = 
A₂ = Area at the throat
A₂ = 
g = acceleration due to gravity = 9.8m/s²
Now,
The gauge pressure at throat = Absolute pressure - The atmospheric pressure
⇒The gauge pressure at throat = 2 - 10.3 = -8.3 m (Atmosphric pressure = 10.3 m of water)
Thus, the pressure difference at the throat and the pipe = 3- (-8.3) = 11.3m
Substituting the values in the discharge formula we get
or

or
Q = 29.28 ×10⁻³ m³/s
Hence, the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
The electric field is always perpendicular to the surface outside of a conductor. TRUE
<span> If an electron were placed on an electric field line, it would move in a direction perpendicular to the field. FALSE, it would move in an anti-parallel direction because its charge is negative </span>
<span>Electric field lines originate on positive charge and terminate on negative charge. TRUE ; but they can also go to infinity </span>
It is possible for two electric field lines to cross each other.
<span> Usually FALSE; though technically possible at special points where field is zero. </span>
If an electron and a positron were in the presence of a very strong electric field, they would move away from each other.
<span> TRUE; one is positive, and one is negative. If the field is strong enough, the action of the field will overcome the mutual attraction between them </span>
It is not possible for the electric field to ever be zero. FALSE: it IS possible, inside a conductor for instance
If a proton were placed on an electric field line, it would move in a direction anti-parallel to the field.
<span> FALSE: being positive, it would move in the SAME direction as the field</span>ic