Answer:
This does not violate the conservation of energy.
Explanation:
This does not violate the conservation of energy because the hot body gives energy in the form of heat to the colder body, this second absorbs energy. This will be the case until both bodies reach the same temperature, reaching thermal equilibrium and reducing the transfer of thermal energy. In this way the energy was only transferred from one body to another but the total energy of the system (body 1 plus body 2) will be the same as in the beginning, respecting the principle of conservation of energy or also called the first principle of thermodynamics .
The part of physics that studies these processes is in turn called heat transfer or heat transfer or thermal transfer. Heat transfer occurs whenever there is a thermal gradient or when two systems with different temperatures come into contact. The process persists until thermal equilibrium is reached, that is, until temperatures are equalized. When there is a temperature difference between two objects or regions close enough, the heat transfer cannot be stopped, it can only be slowed down.
Answer:
this is what popped up when I searched it up:In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes.
Explanation:
The period of the block's mass is changed by a factor of √2 when the mass of the block was doubled.
The time period T of the block with mass M attached to a spring of spring constant K is given by,
T = 2π(√M/K).
Let us say that, when we increased the mass to 2M, the time periods of the block became T', the spring constant is not changed, so, we can write,
T' = 2π(√2M/K)
Putting T = 2π(√M/K) above,
T' =√2T
So, here we can see, if the mass is doubled from it's initial value. The time period of the mass will be changed by a factor of √2.
To know more about time period of mass, visit,
brainly.com/question/20629494
#SPJ4
Answer:
B.
Explanation:
I'm pretty sure the answer is B because animals at the top need a lot of energy, so to make up for loss of energy at the higher levels, those organisms at the top have to consume a lot more.