<u>Answer:</u>
<em>The amount of water entering the earth through precipitation is equal to the amount of water leaving earth through transpiration.</em>
<u>Explanation:</u>
Rates of precipitation and evaporation vary widely according to regions and seasons. But in a global scale the rates are equal. Thus the total amount of earth’s water maintains its constancy even though there is a continuous change in forms of water.
Evaporation and transpiration are the forms in which Water leaves the earth and it returns to the earth in various forms of precipitation like rain, snow, dew, fog etc. This water then reaches ocean and land. The water that reaches the land flows as surface run off into rivers and water bodies or seep into the ground replenishing the ground water table.
D.all of the above is the answer for this question
Explanation:
If we assume negligible air resistance and heat loss, we can assume that all of the Gravitational potential energy of the ball will turn into Kinetic energy as it falls toward the ground.
Therefore our Kinetic energy = mgh = (10kg)(9.81N/kg)(100m) = 9,810J.
The average act on her during the deceleration is 4.47 meters per second.
<u>Explanation</u>:
<u>Given</u>:
youngster mass m = 50.0 kg
She steps off a 1.00 m high platform that is s = 1 meter
She comes to rest in the 10-meter second
<u>To Find</u>:
The average force and momentum
<u>Formulas</u>:
p = m * v
F * Δ t = Δ p
vf^2= vi^2+2as
<u>Solution</u>:
a = 9.8 m/s
vi = 0
vf^2= 0+2(9.8)(1)
vf^2 = 19.6
vf = 4.47 m/s .
Therefore the average force is 4.47 m/s.