Answer:
the girl must sit 2 cm from the pivot at the opposite end of the seesaw.
Explanation:
Given;
length of the seesaw, L = 4.0 m
weight of the boy, W₁ = 400 N
position of the boy from the pivot, d₁ = 1.5 m
weight of her sister, W₂ = 300 N
First, make a sketch of this information given;
0---0.5m---------------------Δ--------------------------4m
↓<--------1.5m-------> <---------x--------->↓
400 N 300N
Apply the principle of moment about the pivot, to determine the value of x;
Sum of anticlockwise moment = sum of clockwise moment
400(1.5) = 300(x)
600 = 300x
x = 600/300
x = 2 cm
Thus, the girl must sit 2 cm from the pivot at the opposite end of the seesaw.
4300 they didn’t look alike because DJ sinwosnbube is wow
Answer:
The ball would hit the floor approximately
after leaving the table.
The ball would travel approximately
horizontally after leaving the table.
(Assumption:
.)
Explanation:
Let
denote the change to the height of the ball. Let
denote the time (in seconds) it took for the ball to hit the floor after leaving the table. Let
denote the initial vertical velocity of this ball.
If the air resistance on this ball is indeed negligible:
.
The ball was initially travelling horizontally. In other words, before leaving the table, the vertical velocity of the ball was
.
The height of the table was
. Therefore, after hitting the floor, the ball would be
below where it was before leaving the table. Hence,
.
The equation becomes:
.
Solve for
:
.
In other words, it would take approximately
for the ball to hit the floor after leaving the table.
Since the air resistance on the ball is negligible, the horizontal velocity of this ball would be constant (at
) until the ball hits the floor.
The ball was in the air for approximately
and would have travelled approximately
horizontally during the flight.