Answer:
$893
Explanation: the complete question should be
The clothes washer in your house consumes 470 kWh of energy per year. Price of the washer is $360 and the lifetime of the washer is 10 yrs. Energy price in your city is 9 cents per kWh. What is the lifecycle cost of the clothes washer? (assume a maintenance cost of $11 per year)
SOLUTION
Given:
The clothes washe power consumption (PC) is 470 kWh
Price of the washer (P) is $360
lifetime of the washer (L) is 10 yrs
Energy price in the city (E) is 9 cents per kWh (Covert to $ by dividing 100)
maintenance cost (M) is $11 per year
Lifecycle cost = P + (PC × L × E) +M + L
Lifecycle cost = $360 + (470kWh × 10years × 9cents/100) + ($11 × 10years)
=$893
1- Kinetic , Mass , Speed
2- Speed
3- Speed, Mass
4- Mass, More
5- Transferred, collide
6- Kinetic, electricity
7- Transferred, Destroyed
:)
Kinetic energy: the energy of motion
Work: the change in kinetic energy
Power: the rate of work done
Explanation:
The kinetic energy of an object is the energy possessed by the object due to its motion. Mathematically, it is given by:

where
m is the mass of the object
v is its speed
The work done an object is the amount of energy transferred; according to the energy-work theorem, it is equal to the change in kinetic energy of an object:

where
is the final kinetic energy
is the initial kinetic energy
Finally, the power is the rate of work done per unit time. Mathematically, ti can be expressed as

where
W is the work done
t is the time elapsed
Learn more about kinetic energy, work and power:
brainly.com/question/6536722
brainly.com/question/6763771
brainly.com/question/6443626
brainly.com/question/7956557
#LearnwithBrainly
Explanation:
B. leads to muscle strain.
Answer:
The wavelength is 173 nm.
Explanation:
This kind of phenomenon is known as photoelectric effect, it occurs when photons of light inside the metal surface and if they have the right amount of energy electrons absorb it and got expelled from the metal as photo electrons. The maximum kinetic energy of that photo electrons is given by the expression:
(1)
With E the energy of the photon and Φ the work function of the material. The work function is a value characteristic of each material and is related with how much the electron is attached to the material, the energy of the photon is the Planck's constant (h=
) times the frequency of light (
) , then (1) is:
(2)
The frequency of an electromagnetic wave is related with the wavelength (
) by:
(3)
with c the velocity of light (c=
)
Using (3) on (2):

Solving for
:


That's the work function of the metal we're dealing. So now if we want to know the wavelength to obtain the double of the kinetic energy we use:

Solving for
:
