Answer:
0.0257259766982 m
Explanation:
= Atmospheric pressure = 101325 Pa
= Initial diameter = 1.5 cm
= Final diameter
= Density of water = 1000 kg/m³
h = Depth = 40 m
The pressure is

From ideal gas law we have

The diameter of the bubble is 0.0257259766982 m
Please,,,,,,,,,,,,,,,,,,,
Airida [17]
Answer:
bsjzbzkzznnzkzkznzjzbzbzbzbzbzbzbzbznznenenenenenene
To solve the exercise it is necessary to keep in mind the concepts about the ideal gas equation and the volume in the cube.
However, for this case the Boyle equation will not be used, but the one that corresponds to the Boltzmann equation for ideal gas, in this way it is understood that

Where,
N = Number of molecules
k = Boltzmann constant
V = Volume
T = Temperature
P = Pressure
Our values are given as,




Rearrange the equation to find V we have,



We know that length of a cube is given by

Therefore the Length would be given as,



Therefore each length of the cube is 3.44nm
D, all notebooks would hit the floor at the same time. The time it takes to hit the floor is independent of their weight, but rather dependent on the acceleration of gravity. Since gravity is constant, they will all hit the floor at the same time.
Answer:
Explanation:
Comment
You could calculate it out by assuming the same starting temperature for each substance. (You have to assume that the substances do start at the same temperature anyway).
That's like shooting 12 with 2 dice. It can be done, but aiming for a more common number is a better idea.
Same with this question.
You should just develop a rule. The rule will look like this
The greater the heat capacity the (higher or lower) the change in temperature.
The greater the heat capacity the lower the change in temperature
That's not your question. You want to know which substance will have the greatest temperature change given their heat capacities.
Answer
lead. It has the smallest heat capacity and therefore it's temperature change will be the greatest.