(a) The moment of inertia of the wheel is 78.2 kgm².
(b) The mass (in kg) of the wheel is 1,436.2 kg.
(c) The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
<h3>
Moment of inertia of the wheel</h3>
Apply principle of conservation of angular momentum;
Fr = Iα
where;
- F is applied force
- r is radius of the cylinder
- α is angular acceleration
- I is moment of inertia
I = Fr/α
I = (200 x 0.33) / (0.844)
I = 78.2 kgm²
<h3>Mass of the wheel</h3>
I = ¹/₂MR²
where;
- M is mass of the solid cylinder
- R is radius of the solid cylinder
- I is moment of inertia of the solid cylinder
2I = MR²
M = 2I/R²
M = (2 x 78.2) / (0.33²)
M = 1,436.2 kg
<h3>Angular speed of the wheel after 4 seconds</h3>
ω = αt
ω = 0.844 x 4
ω = 3.376 rad/s
Thus, the moment of inertia of the wheel is 78.2 kgm².
The mass (in kg) of the wheel is 1,436.2 kg.
The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
Learn more about moment of inertia here: brainly.com/question/14839816
#SPJ1
Answer:
16 m/s
Explanation:
Given that
y momentum = 0.080 *25 = 2
x momentum = 0.075*20 = 1.5
total momentum = √(4 + 2.25)
Total momentum = √6.25
Total momentum = 2.5
total mass = mass of x and y momentum = 0.075 + 0.080 = 0.155
speed of mass center = total momentum / total mass = 2.5/0.155 = 16.
And thus, the speed of the center of mass of this two-particle system at this instant is 16 m/s
Answer:
I would say d I had the same question yesterday and I got it correct so hope that helps
Answer:
all of the above
Explanation:
they all require speed to beat