Can u put a picture of the question with this so I can answer it.
Answer:
This question is solved in detail below. Please refer to the attachment for better understanding of an Ellipse.
Step-by-step explanation:
In this question, there is a spelling mistake. This is vertices not verticles.
So, I have attached a diagram of an ellipse in which it is clearly mentioned where are the vertices of an ellipse.
Vertices of an Ellipse: There are two axes in any ellipse, one is called major axis and other is called minor axis. Where, minor is the shorter axis and major axis is the longer one. The places or points where major axis and minor axis ends are called the vertices of an ellipse. Please refer to the attachment for further clarification.
Equations of an ellipse in its standard form:
This is the case when major axis the longer one is on the x-axis centered at an origin.

This is the case when major axis the longer one is on the y-axis centered at an origin.
where major axis length = 2a
and minor axis length = 2b
Answer:
n = -7
Step-by-step explanation:
Solve for n:
-3 n - 5 = 16
Hint: | Isolate terms with n to the left-hand side.
Add 5 to both sides:
(5 - 5) - 3 n = 5 + 16
Hint: | Look for the difference of two identical terms.
5 - 5 = 0:
-3 n = 16 + 5
Hint: | Evaluate 16 + 5.
16 + 5 = 21:
-3 n = 21
Hint: | Divide both sides by a constant to simplify the equation.
Divide both sides of -3 n = 21 by -3:
(-3 n)/(-3) = 21/(-3)
Hint: | Any nonzero number divided by itself is one.
(-3)/(-3) = 1:
n = 21/(-3)
Hint: | Reduce 21/(-3) to lowest terms. Start by finding the GCD of 21 and -3.
The gcd of 21 and -3 is 3, so 21/(-3) = (3×7)/(3 (-1)) = 3/3×7/(-1) = 7/(-1):
n = 7/(-1)
Hint: | Simplify the sign of 7/(-1).
Multiply numerator and denominator of 7/(-1) by -1:
Answer: n = -7
Answer:
A
Step-by-step explanation:
the base is the the big number, the exponent the small one