Answer: The new volume at different given temperatures are as follows.
(a) 109.81 mL
(b) 768.65 mL
(c) 18052.38 mL
Explanation:
Given:
= 571 mL, 
(a) 
The new volume is calculated as follows.

(b) 
Convert degree Fahrenheit into degree Cesius as follows.

The new volume is calculated as follows.

(c) 
The new volume is calculated as follows.

Answer: The given statement is true.
Explanation:
According to the Dalton's law, total pressure of a mixture of gases that do not react with each other is equal to the partial pressure exerted by each gas.
The relationship is as follows.

or, 
where,
....... = partial pressure of individual gases present in the mixture
Also, relation between partial pressure and mole fraction is as follows.

where,
= mole fraction
Thus, we can conclude that the statement Dalton's law of partial pressures states that the total pressure exerted by a mixture of gases is the sum of the pressures exerted independently by each gas in the mixture, is true.
Answer:
K(48.5°C) = 1.017 E-8 s-1
Explanation:
- CH3Cl + H2O → CH3OH + HCl
at T1 = 25°C (298 K) ⇒ K1 = 3.32 E-10 s-1
at T2 = 48.5°C (321.5 K) ⇒ K2 = ?
Arrhenius eq:
- K(T) = A e∧(-Ea/RT)
- Ln K = Ln(A) - [(Ea/R)(1/T)]
∴ A: frecuency factor
∴ R = 8.314 E-3 KJ/K.mol
⇒ Ln K1 = Ln(A) - [Ea/R)*(1/T1)]..........(1)
⇒ Ln K2 = Ln(A) - [(Ea/R)*(1/T2)].............(2)
(1)/(2):
⇒ Ln (K1/K2) = (Ea/R)* (1/T2-1/T1)
⇒ Ln (K1/K2) = (116 KJ/mol/8.3134 E-3 KJ/K.mol)*(1/321.5 K - 1/298 K)
⇒ Ln (K1/K2) = (13952.37 K)*(- 2.453 E-4 K-1)
⇒ Ln (K1/K2) = - 3.422
⇒ K1/K2 = e∧(-3.422)
⇒ (3.32 E-10 s-1)/K2 = 0.0326
⇒ K2 = (3.32 E-10 s-1)/0.0326
⇒ K2 = 1.017 E-8 s-1
The answer to this is Codon.