Answer: Oxalic Acid is and
Arrhenius Acid.
Explanation: According to
Arrhenius Theory of acid and base, "Acid is any substance which when dissolved in water produces H⁺ Ions".
Therefore, Oxalic Acid is a diprotic substance, which is capable of donating protons in water. This acidity of oxalic acid can be dedicated to the stability of
conjugate base, this stability comes from resonance of the negative charges on
Oxalate ion. Below reaction shows the dissociation of Oxalic Acid into Protons and Oxalate Ion.
Answer:
D.
Explanation:
INCREASE OF SOLAR WINDS When the sun is more active
If more acetic acid were added to a solution at equilibrium, [H⁺] and [CH₃CO₂⁻] would increase to counteract the perturbation. (Option C)
<h3>How do systems at equilibrium respond to perturbation?</h3>
When a system at equilibrium suffers a perturbation, it shifts its equilibrium position to counteract such perturbation.
Let's consider a solution of acetic acid at equilibrium.
CH₃CO₂H(aq) = CH₃CO₂⁻(aq) + H⁺(aq)
If more acetic acid were added to the solution, the system will shift toward the products to counteract such an increase.
How would the system change if more acetic acid were added to the solution?
A. [H⁺] would decrease and [CH₃CO₂⁻] would increase. NO.
B. [H⁺] and [CH₃CO₂⁻] would decrease. NO.
C. [H⁺] and [CH₃CO₂⁻] would increase. YES. Both products would increase.
D. [H⁺] would increase and [CH₃CO₂⁻] would decrease. NO.
If more acetic acid were added to a solution at equilibrium, [H⁺] and [CH₃CO₂⁻] would increase to counteract the perturbation.
Learn more about equilibrium here: brainly.com/question/2943338
#SPJ1
Lymphocytes and the other formed elements are developed from pluripotent stem cells. The pluripotent stem cells generate myeloid stem cells and lymphoid stem cells. Myeloid cells start and complete their development in red bone marrow and give rise to red blood cells, platelets, eosinophils, basophils, neutrophils, and monocytes. Lymphoid stem cells begin development in the red bone marrow, but some are completed in the lymphatic tissues, where they give rise to lymphocytes. The B cell lymphocytes begin and finish in the red bone marrow and the T cell lymphocytes begin in the red bone marrow, but they mature in the thymus.