The balanced chemical reaction is:
<span>2Na + 2H2O → 2NaOH + H2
</span><span>
We first use the amount of hydrogen gas to be produced and the molar mass of the hydrogen gas to determine the amount in moles to be produced. Then, we use the relation from the reaction to relate H2 to Na.
53.2 g H2 ( 1 mol / 2.02 g ) ( 2 mol Na / 1 mol H2 ) ( 22.99 g / 1 mol ) = 1210.96 g Na
1210.96 g Na ( 1 mL / 0.97 g ) = 1248.41 mL Na needed</span>
The independent variable would be the variable in the research that is being manipulated by the researcher. In this case, it would be temperature in the cage as it is what is being manipulated and changed in the research design. The dependent variable would be the variable that is being studied so, for this case, it would be the length and the weight of the mice. The constants are the factors that might affect the dependent variable but is held constant or the same by the researcher throughout the experiment. These are the size of the cage, amount of food and the exercise wheel. The flaw that the scientist would be studying the length of the mice since I don't think the temperature has any effect on it. And base from he results, the change in lengths are not conclusive.
The answer is
<span>2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g)
Your answer is not yet balanced because you have 3 oxygen atoms. it should be balanced by multiplying both side by 2 such as the balanced equation I made. To check it, I will explain why your answer is not yet balanced.
check: (from your equation)
</span> 1-Pb-1
1-S-1
2 -O-3
the difference between the reactant and the product of Oxygen will prove that it is not yet balanced.
If you use 2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g), to check it:
2-Pb-2
2-S-2
6 -O-6
then this is now balance
equilibrium
Heat transfers from a body with high temperature to a body with low temperature until both bodies are in the same temperature.