Answer:
3.2 g of O₂
Solution:
This reaction is for the formation of Potassium Superoxide, The reaction is as follow,
K + O₂ → KO₂
First let us confirm that either the given amount of Potassium produces the given amount of Potassium oxide or not,
So,
As,
39.098 g (1 mole) K produced = 71.098 g of K₂O
So,
3.91 g of K will produce = X g of K₂O
Solving for X,
X = (3.91 g × 71.098 g) ÷ 39.098
X = 7.11 g of K₂O
Hence, it is confirmed that we have selected the right equation,
So,
As,
39.098 g of K required = 32 g of O₂
So,
3.91 g of K will require = X g of O₂
Solving for X,
X = (3.91 g × 32 g) ÷ 39.098 g
X = 3.2 g of O₂
<span>John Dalton introduced a theory proposing that elements vary because of the mass of their atoms.
He said in his theory that all matter is made up of indivisible blocks called atoms. He also stipulated in his theory that elements are identical thus, have different sizes and masses.
Dalton's theory was different from Niels Bohr who proposed a new atomic model which was also commonly known as the modern atomic theory. Bohr's theory says that atoms are arranged in circular orbits around the nucleus. He patterned his model as the solar system.
</span>
4/325 = 2/unknown temperature
unknown temperature= 2/(4/325)=162.5k
The answers is A. Reales energy stored in chemical bonds
Explanation:
Since, it is shown that the reaction has been reversed. Therefore, value of
will become
.
Hence, new 
= 
= 20
Also, the number of moles of each reactant has been halved. So,
for the reaction
will also get halved.
Therefore,
=
= 
= 4.47
As the value of
is given as +39.0 kJ. So, it means that the reaction is endothermic in nature. So, energy of reactants will be more than the products. Hence, according to Le Chatelier's principle reaction will move in the forward direction.
As a result,
will also increase with increase in temperature.