Technically, the answer is iron. Oxygen has a melting point way below zero (-219 degrees celsius), ice becomes water AT room temperature and bromine is already a liquid at room temperature. So, iron has a melting point greater than room temperature due to the fact that metals are made up of giant structures of atoms in a regular arrangement, and there are strong forces of electrostatic attraction between positive metal ions and negative electrons, meaning that a lot of heat energy is required to break the bonds, i.e. a very high melting point, approx. 1500 degrees celsius. Hope this helps.
Answer:
It is made up of two elements.
Explanation:
To answer the question given above,
We shall determine the number of elements present in CaCl₂. This can be obtained as follow:
CaCl₂ contains calcium (Ca) and chlorine gas (Cl₂).
This implies that CaCl₂ contains two different elements.
Now, considering the options given in the question above, CaCl₂ is made up of two elements.
The concentration of the hydrogen ions from molarity can be given with the number of hydrogen atoms in the molecular formula.
<h3>What is molarity?</h3>
Molarity is given as the moles of the solute present in a liters of solution. The compound with the number of hydrogen atoms in the molecular formula with degradation possesses the equivalent concentration of the hydrogen ions.
The compound with molecular formula AH having molarity 2, will produce 2M of hydrogen ions.
Learn more about molarity, here:
brainly.com/question/2817451
#SPJ4
It should be option (A) because conduction is the transfer of heat energy from one place to another by vibrations/motion of the molecules. I hoped I helped.
Answer:
10 molecules of NH₃.
Explanation:
N₂ + 3H₂ --> 2NH₃
As the N₂ supply is unlimited, what we need to do to solve this problem is <u>convert molecules of H₂ into molecules of NH₃</u>. To do so we use the <em>stoichiometric coefficients</em> of the balanced reaction:
- 15 molecules H₂ * = 10 molecules NH₃
10 NH₃ molecules could be prepared from 15 molecules of H₂ and unlimited N₂.