Answer:
The force required to begin to lift the pole from the end 'A' is 240 N
Explanation:
The given parameters for the pole AB are;
The length of the pole, l = 10.0 m
The weight of the pole, W = 600 N ↓
The distance of the center of gravity of the pole from the side 'A' = 4.0 m
Let '
' represent the force required to begin to lift the pole from the end 'A' and let a force applied in the upwards direction be positive
For equilibrium, the sum of moment about the point 'B' = 0, therefore, taking moment about 'B', we have
× 10.0 m - W × 4.0 m = 0
∴
× 10.0 m = W × 4.0 m = 600 N × 4.0 m
× 10.0 m = 600 N × 4.0 m
∴
= 600 N × 4.0 m/(10.0 m) = 240 N
The force required to begin to lift the pole from the end 'A',
= 240 N.
Explanation:
Given that,
Radius of the circular loop, r = 3.5 cm = 0.035 m
(a) During a 0.12-s time interval, the magnitude of the field increases uniformly from 0.2 T to 0.5 T. Due to the change in the magnetic field, an emf will induced in it. The magnitude of induced emf is given by :

So, the magnitude of the emf induced in the loop during the time interval is
.
(b) The negative sign shows that the direction of induced emf in the loop is in anitclockwise direction.
Light because it is an electromagnetic wave and they can travel through the vacuum in outer space.