1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesantik [10]
3 years ago
12

An electron moving at 3.94 103 m/s in a 1.23 T magnetic field experiences a magnetic force of 1.40 10-16 N. What angle does the

velocity of the electron make with the magnetic field? There are two answers between 0° and 180°. (Enter your answers from smallest to largest.)
Physics
1 answer:
anastassius [24]3 years ago
7 0

Answer:

<h2><em>10.4⁰ and 169.6⁰</em></h2>

Explanation:

The force experienced by the moving electron in the magnetic field is expressed as F = qvBsinθ where;

q is the charge on the electron

v is the velocity of the electron

B is the magnetic field strength

θ is the angle that the velocity of the electron make with the magnetic field.

Given parameters

F =  1.40*10⁻¹⁶ N

q = 1.6*10⁻¹⁹C

v = 3.94*10³m/s

B = 1.23T

Required

Angle that the velocity of the electron make with the magnetic field

Substituting the given parameters into the formula:

1.40*10⁻¹⁶ =  1.6*10⁻¹⁹ * 3.94*10³ * 1.23 * sinθ

1.40*10⁻¹⁶ = 7.75392 * 10⁻¹⁹⁺³sinθ

1.40*10⁻¹⁶ = 7.75392 * 10⁻¹⁶sinθ

sinθ = 1.40*10⁻¹⁶/7.75392 * 10⁻¹⁶

sinθ = 1.40/7.75392

sinθ = 0.1806

θ = sin⁻¹0.1806

θ₁ = 10.4⁰

Since sinθ is positive in the 1st and 2nd quadrant, θ₂ = 180-θ₁

θ₂ = 180-10.4

θ₂ = 169.6⁰

<em>Hence, the angle that the velocity of the electron make with the magnetic field are 10.4⁰ and 169.6⁰</em>

You might be interested in
PLEASE help me quickly
Anna007 [38]

Explanation:

its either a or d however i say the best choice is d

6 0
2 years ago
The pulse site located at the point where the upper leg bends is called the
VLD [36.1K]
The pulse site located at the point where the upper leg bends is called the femoral. It is an artery found in the thigh. It is large and is deemed as the main arterial supply for the lower part of the body. It is known as the second artery that is the largest. It is being used as the catheter access artery. From it, diagnostics for the heart, brain, arms, kidney and other parts can be directed to the other arterial system. It can also be used as a source to draw blood that is from the arteries when there is low blood pressure.
3 0
3 years ago
Which means for obtaining hydrogen from water would require the most energy??
Flauer [41]
I think the correct answer would be to electrolyze water (run an electric current through it) to decompose it into hydrogen and oxygen. Assuming 100% efficiency, it is said that it needs about 40kWh per kilogram of water to fully decompose it.
8 0
3 years ago
When a current flows in an aluminum wire of diameter 2.91 mm 2.91 mm , the drift speed of the conduction electrons is 0.000191 m
charle [14.2K]

Answer:

Number of electrons are flowing per second is 2.42 x 10¹⁹

Explanation:

The electric current flows through a wire is given by the relation :

I=envA   ....(1)

Here I is current, e is electronic charge, v is drift velocity of electrons and A is the Area of the wire.

But electric current is also define as rate of electrons passing through junction times their charge, i.e. ,

I=Ne      ....(2)

Here N is the rate of electrons passing through junction.

From equation (1) and (2).

eN = envA

N=nvA

But area of wire, A=\pi \frac{d^{2} }{4}

Here d is diameter of wire.

So, N = nv\pi \frac{d^{2} }{4}

Substitute 2.91 x 10⁻³ m for d, 0.000191 m/s for v and 6 x 10²⁸ m⁻³ for n in the above equation.

N = 6\times10^{28}\times 0.000191\times\pi \frac{(2.91\times10^{-3} )^{2} }{4}

N = 2.42 x 10¹⁹ s⁻¹  

8 0
2 years ago
A uniform solid sphere has mass m= 7 kg and radius r= 0. 4 m. What is its moment of inertia about an axis tangent to its surface
lilavasa [31]

The moment of inertia of a uniform solid sphere is equal to 0.448 kgm^2.

<u>Given the following data:</u>

Mass of sphere = 7 kg.

Radius of sphere = 0.4 meter.

<h3>How to calculate moment of inertia.</h3>

Mathematically, the moment of inertia of a solid sphere is given by this formula:

I=\frac{2}{5} mr^2

<u>Where:</u>

  • I is the moment of inertia.
  • m is the mass.
  • r is the radius.

Substituting the given parameters into the formula, we have;

I=\frac{2}{5} \times 7 \times 0.4^2\\\\I=2.8 \times 0.16

I = 0.448 kgm^2.

Read more on inertia here: brainly.com/question/3406242

4 0
1 year ago
Other questions:
  • What evidence supports a scientist's conclusion that fossil B is older than fossil A?
    15·2 answers
  • (I will give brainliest whoever helps me !!)
    12·1 answer
  • Why is the motion of an athlete moving along the circular path with Constant speed considered to be an accelerated motion?
    7·1 answer
  • PLZ HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!<br> What is a front?
    15·2 answers
  • Which of the following is the best example of Newton's second law? A. A rolling ball comes to a stop because the forces of frict
    12·1 answer
  • Which quantity best captures the concept of resistance?
    9·1 answer
  • What is the greatest velocity which a falling object can achieve while falling through the air?
    15·1 answer
  • Please help I will give brainliest
    8·2 answers
  • What types of cuts do jig saw sanders make?​
    8·2 answers
  • A 2kg book is held against a vertical wall. The coefficient of friction is 0.45. What is the minimum force that must be applied
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!