Answer:
Mo(CO)5 is the intermediate in this reaction mechanism.
Explanation:
The reaction mechanism describes the sequence of elementary reactions that must occur to go from reactants to products. Reaction intermediates are formed in one step and then consumed in a later step of the reaction mechanism.
In this reaction mechanism, Mo(CO)5 is the product of 1st reaction and then it is used as a reactant in 2nd reaction. So, Mo(CO)5 is the reaction intermediates.
The overall balanced equation would be,
Mo(CO)6 + P(CH3) ↔ CO + Mo(CO)5 + P(CH3)3
Answer:
E 1: cyclohexene
Explanation:
This reaction is an example of the dehydration of cyclic alcohols. The reaction proceeds in the following steps;
1) The first step of the process is the protonation of the cyclohexanol by the acid. This now yields H2O^+ attached to the cyclohexane ring.
2) the water molecule, which a good leaving group now leaves yielding a carbocation. This now leaves a cyclohexane carbocation which is highly reactive.
3) A water molecule now abstracts a proton from the carbon adjacent to the carbocation leading to the formation of cyclohexene and the regeneration of the acid catalyst. This is an E1 mechanism because it proceeds via a carbocation intermediate and not a concerted transition state, hence the answer.
Answer: I THINK C
Explanation: It has a 25% chance of being right so I'd wait if I were you just sayin
The answer is force
sorry if i’m wrong