Answer:
The chemical equation needs to be balanced so that it follows the law of conservation of mass. A balanced chemical equation occurs when the number of the different atoms of elements in the reactants side is equal to that of the products side.
Answer: Transition from X to Y will have greater energy difference.
Explanation: For studying the energy difference, we require Planck's equation.

where, h = Planck's Constant
c = Speed of light
E = Energy
= Wavelength of particle
From the equation, it is visible that the energy and wavelength follow inverse relation which means that with low wavelength value, energy will be the highest and vice-versa.
As electron A falls from X-energy level to Y-energy level, it releases blue light which has low wavelength value (around 470 nm) which means that it has high energy.
Similarly, Electron B releases red light when it falls from Y-energy level to Z-energy level, which has high wavelength value (around 700 nm), giving it a low energy value.
Energy Difference between X-energy level and Y-energy level will be more.
Answer: 714 g Al2O3
Explanation: Solution attached
First convert mass of O2 to moles
Do the mole ratio between O2 and Al2O3 from the balanced equation.
Convert moles of Al2O3 to mass using its molar mass.
Answer:
The Answer is eight.
Explanation:
Sorry if it's too late and it doesn't help! But I hope you have a magnificent day! :3
A solution that appears dark orange in color is not absorbing all orange wavelengths of light.