Answer:
Astronomer Edmond Halley
Explanation:
The astronomical unit using the transit of venus
The underlying principle behind Halley's method is called parallax
Answer:
The orbital speed of this second satellite is 5195.16 m/s.
Explanation:
Given that,
Orbital radius of first satellite 
Orbital radius of second satellite 
Mass of first satellite 
Mass of second satellite 
Orbital speed of first satellite = 4800 m/s
We need to calculate the orbital speed of this second satellite
Using formula of orbital speed

From this relation,

Now, 

Put the value into the formula


Hence, The orbital speed of this second satellite is 5195.16 m/s.
The rocket will cover
distance in 4. 5 s. Acceleration can be defined as the change in velocity.
<h3>
What is acceleration?</h3>
Acceleration can be defined as the change in speed or the direction of the object.
From kinamatic equation:

Where,
- final velocity = 445 m/s
- initial valocity = 0 m/s
- acceleration = 99. 0 m/s²
- time = 4. 50 s
Put the values in the formula,

Therefore, the rocket will cover
distance in 4. 5 s.
Learn more about Acceleration :
brainly.com/question/2697545
1,000 milligrams = 1 gram
2,000 milligrams = 2 grams
3,000 milligrams = 3 grams
4,000 milligrams = 4 grams
In addition to acceleration of gravity we experience centrifugal acceleration away from the axis of rotation of the earth. this additional acceleration has value ac = r w^2 where w = angular velocity and r is distance from your spot on earth to the earth's axis of rotation so r = R cos(l) where l = 60 deg is the lattitude and R the earth's radius and w = 1 / (24hr x 3600sec/hr)
<span>now you look up R and calculate ac then you combine the centrifugal acc. vector ac with the gravitational acceleration vector ag = G Me/R^2 to get effective ag' = ag -</span>