Refer to the diagram shown below.
The given data is
mass, kg Coordinates. m
------------- -----------------
2 (0, 0)
2 (2, 0)
4 (2, 1)
Total mass, M = 2+2+4 = 8kg
Let (x,y) be the coordinates of M.
Then, taking moments about the origin, we obtain
8x = 2*0 + 2*2 + 4*2 = 12
x = 1.5 m
8y = 2*0 + 2*0 + 4*1 = 4
y = 0.5 m
Answer: (1.5, 0.5) m
Answer:
Positive velocity and negative acceleration
Explanation:
An object moving in the positive direction has a positive velocity.
An object that's slowing down while moving in the positive direction has a negative acceleration.
The correct answer is "Humidity". good luck!
Answer:
B. The buoyant force on the copper block is greater than the buoyant force on the lead block.
Explanation:
Given;
mass of lead block, m₁ = 200 g = 0.2 kg
mass of copper block, m₂ = 200 g = 0.2 kg
density of water, ρ = 1 g/cm³
density of lead block, ρ₁ = 11.34 g/cm³
density of copper block, ρ₂ = 8.96 g/cm³
The buoyant force on each block is calculated as;

The buoyant force of lead block;

The buoyant force of copper block

Therefore, the buoyant force on the copper block is greater than the buoyant force on the lead block
A. The formula for mean free time is:
t = V/(4π√2 r²vN)
where
N = 1×10¹⁶ molecules (per m³)
V = 1 m³
r = 111×10⁻⁷m (atomic radius of silicon)
Let's solve for v first:
v = √(3RT/M) = √(3(8.314 m³·Pa/mol·K)(25 + 273 K)/28.1 g/mol Si)
v = 16.26 m/s
t = (1 m³)/(4π√2 (111×10⁻⁷m)²(16.26 m/s)(1×10¹⁶ molecules))
<em>t = 2.81×10⁻9 s</em>
<em>Pure silicon has a high resistivity relative to copper because copper is a conductor, while silicon is a semi-conductor. </em>