There are a few ways to do this- unfortunately different fields are better at it than others! Medical research is generally pretty good, some other fields likewise very good, some not as much.
Basically, though, what they do is use standadisation- they agree on the terminology, units of data, statistical measures, and so forth, that will be used in that scientific field. As much as possible, every scientist in the field uses those standards so everyone working in the field should recognise it.
For instance, in clinical trials, there is very good agreement worldwide on what the different metrics we use are- e.g. in cancer research, we usually want to know the 5-year survival rate (meaning the percentage of patients still alive 5 years after diagnosis). So anyone with the right training should be able to pick up a clinical trial report and understand what the results are and what the report is saying.
Answer:
Final Velocity = 4.9 m/s
Explanation:
We are given;. Initial velocity; u = 2 m/s
Constant Acceleration; a = 0.1 m/s²
Distance; s = 100 m
To find the final velocity(v), we will use one of Newton's equations of motion;
v² = u² + 2as
Plugging in the relevant values to give;
v² = 2² + 2(0.1 × 100)
v² = 4 + 20
v² = 24
v = √24
v = 4.9 m/s
Answer:
Explanation: Determine the gravitational acceleration. ...
Decide whether the object has an initial velocity. ...
Choose how long the object is falling. ...
Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt
Since there are no external forces, including friction, act on the flatcar. after the sack rests on the flatcar, we would assume that momentum is conserved. This means that
total momentum of car before collision = total momentum of car after collision.
Recall,
momentum = mass x velocity
From the information given,
mass of car before collision = 2000
velocity of car before collision = 3
Thus,
total momentum of car before collision = 2000 x 3 = 6000
Also,
mass of sack = 500
mass of car and sack after collision = 500 + 2000 = 2500
velocity after collision = v
momentum after collision = 2500 x v = 2500v
Since momentum is conserved, then
6000 = 2500v
v = 6000/2500
v = 2.4
the speed of the flatcar is 2.4 m/s