Answer:
wavelength = 4 m
Explanation:
For distance 6 and 8m and speed of sound in air = c.
The travel time form the various distances 6 and 8 are 6/c and 8/c respectively.
cos(wt1) + cos(wt2) = 0
for a shift in phase t1 = t - 6/c,
t2 = t - 8/c
substituting t1 and t2
cos(π - w(t - 8/c)) = cos(w(t - 6/c))
solving using trigonometry identities in radians.
we have,
π - 2πn = w(t - 8/c) - w(t - 6/c)
putting w = 2πf
π - 2πn = 2πf(t - 8/c) - 2πf(t - 6/c)
dividing both sides by π
1 - 2n = 2ft - 16(f/c) - 2ft + 12(f/c)
simplifying we have,
1 - 2n = -4(f/c)
solving for f we have,
f = c/4(2n - 1)
putting n=1 and c = 343m/s
f = (343/4)*(2(1) - 1)
f = 85.75 Hertz
wave lenght = c/f , where c= speed of sound in air , f= frequency
wave lenght = 343/85.75 = 4m
Answer:
Option D
Explanation:
Resistors are said to be connected in “Series”, when they are daisy chained together in a single line. Since all the current flowing through the first resistor has no other way to go it must also pass through the second resistor and the third and so on. Then, resistors in series have a Common Current flowing through them as the current that flows through one resistor must also flow through the others as it can only take one path.
Total Resistance = R₁ + R₂ +R₃ +R₄ ohm
Note then that the total or equivalent resistance, R has the same effect on the circuit as the original combination of resistors as it is the algebraic sum of the individual resistances.
Total resistance R = 3 + 3 + 3 +3
= 12 ohm
All electromagnetic radiation ... all wavelengths, all frequencies ... has the
same speed, as long as you're measuring all through the same medium.
The speed is fastest in vacuum ... 299,792,458 meters per second. It's
slower than that in any material, and different in every material.
The answer is A and B
Explanation: the nucleus was viewed as composed of combinations of protons and electrons, the two elementary particles known at the time, but that model presented several experimental and theoretical contradictions.
AND
Protons and neutrons have approximately the same mass, about 1.67 × 10-24 grams.